รายงานผลการศึกษาฉบับสมบูรณ์ (Final Report)

โครงการศึกษาวิจัยการปฏิรูปสื่อ

เล่มที่ 1 “วิวัฒนาการ และสถานภาพปัจจุบันของสื่อ
โครงสร้างตลาดสื่อวิทยุ โทรทัศน์ หนังสือพิมพ์
และสื่อใหม่ (New Media),
วิวัฒนาการเทคโนโลยีของสื่อ”

เสนอ
สำนักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์และกิจการ
โทรคมนาคมแห่งชาติ

โดย
มูลนิธิสถาบันวิจัยเพื่อการพัฒนาประเทศไทย

มีนาคม 2559
3.2.3 โครงสร้างตลาดหนังสือพิมพ์ ... 78
3.3 ผลกระทบของการเติบโตแบบก้าวกระโดดของสื่อใหม่ (new media) ที่มีต่อ
โครงสร้างตลาดสื่อดั้งเดิม .. 80
เอกสารอ้างอิง ... 87
สารบัญตาราง

ตารางที่ 1.1 สรุปแนวคิดโทรทัศน์แบบขยาย... 5
ตารางที่ 1.2 สรุปแนวคิดวิทยุแบบขยาย... 6
ตารางที่ 2.1 การปรับตัวเข้าหาสื่อใหม่ของผู้ประกอบกิจการสถานี.. 53
ตารางที่ 2.2 การปรับตัวเข้าหาสื่อใหม่ของผู้ประกอบกิจการสถานีวิทยุ.. 58
ตารางที่ 2.3 การปรับตัวเข้าหาสื่อใหม่ของผู้ผลิตหนังสือพิมพ์.. 60
ตารางที่ 3.1 ผู้ดำเนินงานสถานีวิทยุ... 73
ตารางที่ 3.2 ข้อมูลการสำรวจความนิยมในเดือนกรกฎาคม 2558... 77
ตารางที่ 3.3 ส่วนแบ่งตลาดหนังสือพิมพ์... 79
สารบัญภาพ

หน้า

ภาพที่ 1.1 ห่วงโซ่คุณค่า (value chain) ของการแพร่ภาพกระจายเสียงดิจิทัล .. 2
ภาพที่ 1.2 แนวคิดในการให้บริการแพร่ภาพกระจายเสียงโทรทัศน์ในอนาคต ... 7
ภาพที่ 2.1 จำนวนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบตั้งโต๊ะ โน้ตบุ๊ค ... 50
ภาพที่ 2.2 จำนวนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบตั้งโต๊ะ โน้ตบุ๊ค โทรศัพท์มือถือแบบสมาร์ทโฟน และแท็บเล็ต .. 51
ภาพที่ 2.3 การเข้าถึงอินเทอร์เน็ต .. 51
ภาพที่ 3.1 หน่วยงานที่ได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ AM .. 72
ภาพที่ 3.2 หน่วยงานที่ได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ FM .. 72
ภาพที่ 3.3 ระดับความชื่นชอบสถานีโทรทัศน์ 5 ช่องแรกที่ได้รับความนิยมสูงสุด (ทั่วประเทศ) 76
ภาพที่ 3.4 ระดับความชื่นชอบสถานีโทรทัศน์ลำดับที่ 3-10 ที่ได้รับความนิยมสูงสุด (ทั่วประเทศ) 77
ภาพที่ 3.5 จำนวนผู้อ่านหนังสือพิมพ์ออนไลน์ .. 79
ภาพที่ 3.6 งบโฆษณาทางโทรทัศน์ .. 80
ภาพที่ 3.7 งบโฆษณาทางวิทยุ นิตยสาร และหนังสือพิมพ์ .. 81
ภาพที่ 3.8 งบโฆษณาทางสื่อดิจิทัล ... 81
ภาพที่ 3.9 กำไรสุทธิของผู้ประกอบกิจการสื่อรายใหญ่ปี 2557 .. 82
ภาพที่ 3.10 EBITDA/รายได้รวม ของผู้ประกอบกิจการสื่อรายใหญ่ปี 2557 ... 82
ภาพที่ 3.11 การเปลี่ยนแปลง EBITDA/รายได้รวม ของผู้ประกอบกิจการสื่อรายใหญ่ปี 2555-2557 83
ส่วนที่ 1 วิวัฒนาการเทคโนโลยีของสื่อ (Evolution of media technology)

1.1 บทนำ

สื่อในการศึกษาจะหมายถึง สื่อมวลชน (mass media) ที่สามารถกระจายข้อมูลข่าวสารจากบุคคลหนึ่งหรือกองกำลังหนึ่งไปยังมวลชนจำนวนมากโดยเฉพาะประชาชนทั่วประเทศในเวลาอันรวดเร็ว ทั้งนี้ สื่อแบ่งออกเป็น 2 ประเภทคือ

1 สื่อดั้งเดิม (traditional media) หมายถึง สื่อที่ผู้บริโภคเข้าถึงเนื้อหาผ่านการออกอากาศ (broadcast) โดยใช้โทรทัศน์ และวิทยุกระจายเสียง (audio) ทั้งนี้ รวมสื่อที่ เช่น หนังสือพิมพ์

2 สื่อใหม่ (new media) เป็นสื่อที่เกิดจากการปรับปรุงหรือเปลี่ยนคุณสมบัติบางอย่างของ “สื่อ ดั้งเดิม” โดยความหมายของสื่อใหม่นั้นครอบคลุมไปถึงเทคโนโลยีดิจิทัล เทคโนโลยีคอมพิวเตอร์ เทคโนโลยีเครือข่าย รวมถึงเทคโนโลยีสารสนเทศและการสื่อสารในช่วงปลายศตวรรษที่ 20 เช่น สื่อใหม่มีคุณสมบัติเฉพาะทั้งในเชิงเทคนิค (technical aspect) และคุณสมบัติในเชิงสังคม (social aspect) ที่แตกต่างจากสื่อดั้งเดิม เช่น

- สื่อใหม่เป็นการสื่อสารสองทาง (Two-way communication)
- สื่อใหม่จ่ายต่อการเข้าถึงและการเผยแพร่สารสนเทศ โดยปราศจากข้อจำกัดเรื่องพื้นที่และเวลา
- เนื้อหาต่างๆของสื่อใหม่สามารถเชื่อมโยงรวมมาได้ง่าย ผ่านการใช้เทคโนโลยีสื่อใหม่ เช่น hypertext หรือ search engine
- สื่อใหม่สามารถแสดงข้อมูลหยุดพักได้สะดวก เช่น สมาร์ทโฟน สมาร์ทเดวิซ์ (smart devices) เป็นต้น
- สื่อใหม่มีลักษณะที่หลอมรวมกัน (Convergence)
- สื่อใหม่มีความสามารถที่จะประมวลเนื้อหาจากหลายแหล่งมาไว้รวมกัน (Aggregation of Content) เช่น สามารถอ่านข่าวออนไลน์ต่างๆได้ง่าย รวมไปถึงการที่ผู้ใช้สามารถนำเนื้อหาจากแหล่งต่างๆ มีผลิตภัณฑ์ คัดแปลง หรือตัดตอนได้ไม่จำกัด
- สื่อใหม่อนุญาตให้ผู้รับสามารถเป็นผู้เปลี่ยนแปลงเนื้อหา (User-based transformation of new media) ต่างจากสื่อดั้งเดิม ที่การเปลี่ยนแปลงเรื่องราวเนื้อหาสื่อเป็นส่วนหนึ่งของกระบวนการผลิต ที่มีแต่ผู้ผลิตสื่อทำนั้นเป็นผู้ดำเนินการ

1. คู่มือสื่อใหม่ศึกษา หน้า 16 กาญจนา แก้วเทพ และ นิคม ชัยขุนพล
2. บทความ แนวทางการกำกับสื่อใหม่ในยุคการหลอมรวมเทคโนโลยี บรรทธศักดิ์ ศรีพานันท์ มหาวิทยาลัยกรุงเทพ
3. คู่มือสื่อใหม่ศึกษา หน้า 18-51 กาญจนา แก้วเทพ และ นิคม ชัยขุนพล
จากการแบ่งประเภทสื่อดังกล่าว เราสามารถแบ่งเทคโนโลยีที่เกี่ยวข้องกับสื่อออกเป็น 2 ประเภทคือ

1 เทคโนโลยีสื่อ (media technology) ซึ่งรวมทั้งเทคโนโลยีดิจิทัลและแอนะล็อก แต่จะให้ความสำคัญกับเทคโนโลยีดิจิทัลเป็นหลัก โดยจะรวมถึง โทรทัศน์ดิจิทัลภาคพื้นดิน (terrestrial digital television) และกระจายเสียงดิจิทัล (digital audio) และเทคโนโลยีอื่น ได้แก่ โทรทัศน์ดาวเทียม (satellite television) โทรทัศน์เคเบิล (cable television) โทรทัศน์ไอพี (IP television) และหนังสือพิมพ์

2 เทคโนโลยีอินเทอร์เน็ต (internet technology) ได้แก่ ระบบแบบมีสาย (wired broadband) และระบบแบบไร้สาย (wireless broadband) ตลอดจนเทคโนโลยีอื่นๆ ที่อยู่ในระดับสูงขึ้นไปที่อยู่บนฐานของเทคโนโลยีอินเทอร์เน็ต

1.2 พัฒนาการทางเทคโนโลยีสื่อ: วิทยุ-โทรทัศน์ในอนาคต

พัฒนาการทางเทคโนโลยี 2 ประการที่จะกำหนดทิศทางของการเผยแพร่ภาพกระจายเสียงทางวิทยุและโทรทัศน์ในอนาคตคือ ประการที่หนึ่ง โครงข่ายสื่อสารความเร็วสูงได้เข้าถึงผู้บริโภคในวงกว้าง ซึ่งจะทำให้เครื่องขยายอินเทอร์เน็ตจะกลายเป็นช่องทางสำคัญในแพร่แผ่นเนื้อหาของวิทยุและโทรทัศน์ ซึ่งรวมถึงการแพร่ภาพกระจายเสียง ประการที่สอง พัฒนาการทางเทคโนโลยีเฉพาะภาคพื้นดินให้เพิ่มความจุของสัญญาณทำให้คุณภาพของภาพที่ออกอากาศดีขึ้น และมีความครอบคลุมมากขึ้น

สภาพแวดล้อมมาแกรมระหว่างประเทศ (ITU) คาดการณ์ไว้ในรายงาน Trends in Broadcasting (ITU, 2013) ว่า ในปลายคริสต์ศตวรรษที่ 2 พัฒนาการทางเทคโนโลยีจะมีผลกระทบต่อผู้ผลิตในทุกส่วนของห่วงโซ่คุณค่า (value chain) ของการเฉพาะภาคพื้นดิน (digital broadcasting value chain) ในภาพที่ 1 เช่น อุปกรณ์รับภาพและเสียงจะมีคุณภาพดีขึ้น สามารถสื่อสารแบบโต้ตอบได้ (interactive) และสามารถรับสัญญาณได้หลายช่องทาง ทั้งสัญญาณโทรทัศน์ภาคพื้นดินและเครื่องขยายอินเทอร์เน็ตความเร็วสูง อุปกรณ์ต่างๆ เหล่านี้จะทำให้อุปกรณ์ที่มีหลากหลายรูปแบบและมีสัญญาณเสียงหลายช่องสัญญาณไปจนถึงอุปกรณ์ที่ใช้เมื่อออก (handheld device) ขนาดเล็กเช่น สมาร์ทโฟนและแท็บเล็ต

ภาพที่ 1.1 ห่วงโซ่คุณค่า (value chain) ของการเฉพาะภาคพื้นดิน (digital broadcasting value chain)

ที่มา: ITU (2013)
เนื้อหาสำคัญที่จะทำให้เราได้ประโยชน์จากเทคโนโลยีดิจิทัลคือ การเปลี่ยนผ่านจากการแพร่ภาพกระจายเสียงในระบบอะนาล็อกไปสู่ระบบดิจิทัล โดยมีหลักไมล์ที่สำคัญในการเปลี่ยนผ่านคือ การเสร็จสิ้นของการเปลี่ยนผ่านการแพร่ภาพกระจายเสียงในระบบดิจิทัลของโทรทัศน์ภาคพื้นดิน (digital switch over) โดยในประมาณปี 2020 ประเทศต่างๆ สำนักข่าวจะเสร็จสิ้นกระบวนการนี้ หลักไมล์ที่สำคัญอีกจุดหนึ่งคือ การทำคลื่นในอ่าน 700 MHz และ 800 MHz มาจัดสรรใหม่ หรือที่เรียกว่า “การปันผลทางดิจิทัล” (digital dividend) ซึ่งจะมีเกิดขึ้นตั้งแต่ปี 2015 เพื่อใช้ในบริการตอบแบบเคลื่อนที่ ซึ่งจะทำให้มีบริการแพร่ภาพกระจายเสียงและมัลติมีเดียได้อย่างมีประสิทธิภาพและความเร็วสูงกว่าปลายไม่ได้เป็นบริการจากกลุ่มที่กว้างขึ้นกว่าเดิมมาก

ที่สำคัญ หน่วยงานการทางเทคโนโลยีดังกล่าวจะทำให้แนวคิดในการให้บริการ (service concept) เปลี่ยนแปลงไปด้วย จากการแพร่ภาพกระจายเสียงแบบเดิม (traditional broadcasting) ซึ่งมีลักษณะเชิงเส้น (linear broadcasting) ไปสู่การแพร่ภาพกระจายเสียงแบบขยาย (enhanced broadcasting) ซึ่งให้บริการแบบไม่เชิงเส้น (linear broadcasting) ทั้งในด้านลำดับและเวลา ซึ่งผู้ชมสามารถกำหนดเอง โดยผ่านการสื่อสารแบบโต้ตอบ (interactive) และการรับชมโดยปรับเวลา (time shifted) และการรับชมต่อเนื่องในสถานที่ใดก็ได้

บริการแพร่ภาพกระจายเสียงแบบขยายสามารถเกิดขึ้นผ่านโครงข่ายต่างๆ ที่หลากหลาย ทั้งโครงข่ายแพร่ภาพกระจายเสียงภาคพื้นดิน (terrestrial broadcasting) เคเบิ้ลทีวี (cable TV) ไอพีทีวี (IPTV) โครงข่ายดาวเทียม ตลอดจนโครงข่ายตอบแบบเคลื่อนที่ ทำให้เกิดกิจการ “บริการลูกผสมระหว่างตอบแบบเคลื่อนที่และการแพร่ภาพกระจายเสียง” (hybrid broadcast-broadband service) ซึ่งสามารถใช้บริการในขณะที่เคลื่อนที่ได้

เทคโนโลยีการแพร่ภาพกระจายเสียงแบบขยาย ถูกพัฒนาขึ้นมาแบบ 3 แนวคิดคือ
1. การรับชมโทรทัศน์ในเวลาใดก็ได้ (anytime TV) ตามทางเลือกของผู้รับชม ซึ่งจะทำให้เกิดการรับชมแบบปรับเวลาในรายการสารคดีภาพยนตร์และเกมโชว์ ในขณะที่มีการรับชมสดๆ ในรายการกีฬาและรายการข่าวโทรทัศน์
2. การรับชมในที่ใดก็ได้ (anywhere TV) ซึ่งไม่จำกัดอยู่ในห้องนั่งเล่นหรือในบ้าน แต่สามารถรับชมในขณะเดินป่าที่เดินด้าย โดย นอกจากจะรับชมผ่านโทรทัศน์ในห้องแล้ว อาจรับชมผ่านจอที่ 2 (second screen) หรืออุปกรณ์รับชมอื่นๆ เช่น คอมพิวเตอร์ สมาร์ทโฟนหรือแท็บเล็ต โดยผ่านโครงข่ายสื่อสารประจำที่ หรือเคลื่อนที่แบบต่างๆ
3. บริการสื่อสารแบบโต้ตอบได้ (interactive) ซึ่งจะทำให้ผู้ชมสามารถตอบสนองกับรายการต่างๆได้ และสามารถเรียกข้อมูลเพิ่มเติมของรายการได้ตามที่ต้องการ.
ทั้งนี้เทคโนโลยีการรับชม anytime TV มีอย่างน้อย 3 แนวทางคือ

1. การใช้เครื่องบันทึกทีวีส่วนบุคคล (personal video recorder: PVR) ซึ่งสามารถบันทึกรายการในตารางเวลาที่ต้องการ โดยใช้คู่มือการรับชมโปรแกรมอีเล็กทรอนิกส์ (electronic program guide: EPG) ช่วยอำนวยความสะดวกในการรับชม

2. การรับชมทีวีอย่างล่วงหน้า (catch-up TV) โดยผ่านเครื่องช่วยอินเทอร์เน็ต ซึ่งสามารถรับชมผ่านทางคอมพิวเตอร์ สมาร์ทโฟนและแท็บเล็ต หรือโทรทัศน์ที่มีการเชื่อมต่อกับโครงข่ายอินเทอร์เน็ต ซึ่งเรียกว่าโทรทัศน์เชื่อมต่อ (connected TV) หรือ “บริการสูตรผสมระหว่างระบบแบบแพร่และบริการแพร่กระจายเสียง” (hybrid broadcast-broadband service หรือ HBB) ซึ่งมีบริการเสริมอื่นๆ ผ่านโครงข่ายสื่อสารประจำที่ หรือเครื่องที่มีตัวแบบต่างๆ

3. การรับชมทีวีผ่านทางอินเทอร์เน็ต (catch-up TV) โดยเป็นส่วนหนึ่งของการให้บริการวีดีโอตามสั่ง (video on demand) จากผู้ประกอบการเครื่องรับทีวีหรือ IPTV

บริการสื่อสารแบบดังกล่าวให้คนชมสามารถมีส่วนร่วมในการรายการต่างๆ ทั้งการให้ความเห็น การรับข้อมูลเพิ่มเติมหรือการรับรายการวีดีโอตามสั่ง นอกจากนี้ ผู้บริโภคยังอาจรับข้อมูลซึ่งไม่เกี่ยวกับรายการที่สนใจ เช่น ข่าวหรือบริการ e-learning ตลอดจนการแสดงข้อมูลอื่นๆ ได้ด้วย ทั้งนี้ บริการนี้จะเกิดขึ้นได้จะต้องมีการสื่อสารผ่านโครงข่ายที่มีการอัพโหลด (upload) และดาวน์โหลด (download) ข้อมูล โดยผู้ชมส่งข้อมูลผ่านโครงข่ายอัพลิงค์ (uplink) ไปยังสถานี และรับข้อมูลเช่น รายการวีดีโอตามสั่งผ่านโครงข่ายบรอดแบนด์ดาวน์ลิงค์ (downlink) นำไปประมวลผลว่า การรับชมในลักษณะนี้ทำให้มีรายการที่ได้รับความนิยมสูงมากจำนวนหนึ่ง ในขณะที่มีรายการจำนวนมากที่ได้รับชมน้อยมาก ในลักษณะของการกระจายตัวของเส้นโค้งหางยาว (long tail curve)

ในทางเทคนิค บริการต้องออกแบบให้ทำได้โดย “มิดเดิ้ลแวร์” (middleware) ที่ติดตั้งในเครื่องรับโทรทัศน์หรือกล่องรับสัญญาณ (set-top box) โดยมีมาตรฐานที่มีมาตรฐานเปิด (open standard) และมาตรฐานปิดที่มีมาตรฐานเปิดที่เกี่ยวข้องกับ DVB ได้แก่ MHEG5 ซึ่งใช้ในอังกฤษ และ MHP ซึ่งใช้ในอิตาลี ส่วนตัวอย่างของมาตรฐานเปิดที่เกี่ยวข้องกับ ISDB-T เช่น Ginga ซึ่งใช้ในบราซิลและแองโกลา และ BML ซึ่งใช้ในอังกฤษ นอกจากนี้ยังมีมาตรฐานใหม่ที่เกี่ยวข้องกับ DVB เช่น HbbTV ซึ่งใช้ในฝรั่งเศสและเยอรมนี ตลอดจนประเทศยุโรปอื่นและ YouView ซึ่งใช้ในอังกฤษ

เครื่องรับโทรทัศน์รุ่นใหม่จึงมักจะมีความสามารถเชื่อมต่อกับโครงข่ายอินเทอร์เน็ต โดยมีแนวทางการเชื่อมต่อ 2 ในลักษณะคือ

1. เครื่องรับโทรทัศน์ซึ่งใช้ “มิดเดิ้ลแวร์” ดังกล่าวมาข้างต้น
2. เครื่องรับโทรทัศน์ซึ่งผู้ผลิตให้บริการรายการและข้อมูลต่างๆ ผ่าน app

อีกแนวทางหนึ่งในการใช้บริการสื่อสารแบบโต้ตอบได้คือ การใช้จอที่ 2 หรือจอเสริม (companion screen) โดยการค้นหาข้อมูลจะต้องใช้อุปกรณ์อีกชุดซึ่งเชื่อมต่อกับอินเทอร์เน็ต เช่น สมาร์ทโฟนหรือแท็บเล็ต ซึ่งมี apps ที่ดาวน์โหลดมาจากสถานีโทรทัศน์ แนวทางนี้มีข้อดีหลายประการเช่น สามารถรับชมผ่านจอที่ 2 ได้ง่าย หลักยังไม่ถูกรบกวน เนื่องจากไม่ต้องมีวินโดว์ปรากฏขึ้นบนจอ ในขณะที่จอที่ 2 สามารถป้องกันข้อมูลเข้าไปได้ง่าย

ตารางที่ 1.1 สรุปแนวคิดโทรทัศน์แบบสบาย

<table>
<thead>
<tr>
<th>Enhanced broadcasting</th>
<th>Delivery</th>
<th>Terminal devices (must be equipped to receive the corresponding transmission standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV anytime</td>
<td>• Broadcast (DTTB)</td>
<td>• PVR/TV set; TV set *; tablet computer; smartphone</td>
</tr>
<tr>
<td></td>
<td>• Hybrid broadcast-broadband</td>
<td>• PC; tablet computer; smartphone</td>
</tr>
<tr>
<td></td>
<td>• Broadband</td>
<td></td>
</tr>
<tr>
<td>TV anywhere</td>
<td>• Broadcast (DTTB)</td>
<td>• TV set; car TV set; tablet computer; smartphone</td>
</tr>
<tr>
<td></td>
<td>• Broadcast (MTV)</td>
<td>• Car TV set; tablet computer; smartphone</td>
</tr>
<tr>
<td></td>
<td>• Broadband</td>
<td>• PC; tablet computer; smartphone</td>
</tr>
<tr>
<td>Interactivity</td>
<td>• Broadcast (DTTB)</td>
<td>• TV set (local interactivity)</td>
</tr>
<tr>
<td></td>
<td>• Hybrid broadcast-broadband</td>
<td>• Tablet computer; smartphone</td>
</tr>
<tr>
<td></td>
<td>• Broadband</td>
<td>• PC; tablet computer; smartphone</td>
</tr>
</tbody>
</table>

(*) With Internet connection

ที่มา: ITU (2013)

สหภาพโทรคมนาคมระหว่างประเทศยังคาดการณ์ด้วยว่า บริการโทรทัศน์แบบเชิงเส้นที่มุ่งเฉพาะภาพกระจายเสียงไปยังประชาชนกลุ่มใหญ่ในปัจจุบัน จะถูกเสริมด้วยบริการผ่านเครือข่ายการสื่อสารของระบบที่ซึ่งทำให้รายการโทรทัศน์สามารถปรับให้เข้ากับความต้องการของผู้ชมแต่ละคนได้ จากดำเนินการบริการโทรทัศน์แบบไม่เป็นเชิงเส้น (non-linear broadcasting) ทั้งนี้ ความสำคัญโดยเรียบเนื่องระหว่างการเฉพาะภาพกระจายเสียงและการสื่อสารผ่านโครงข่ายของระบบจะแตกต่างกันไปแล้วแต่ประเทศ โดยจะขึ้นอยู่กับสภาพการตลาดและกฎระเบียบในการกำหนด
แนวคิดในการให้บริการวิทยุแบบขยายจะคล้ายกับโทรทัศน์แบบขยาย อย่างไรก็ตามแนวคิดการรับฟังในที่ใดก็ได้ (anywhere) ในกรณีของวิทยุมีความก้าวหน้ากว่าของโทรทัศน์ เพราะมีเครื่องรับที่สามารถเคลื่อนที่ได้ทุกที่ รวมทั้งในรถยนต์

นอกจากนี้ เทคโนโลยีสตรีมมิ่ง (streaming) ในเครื่องรับอินเทอร์เน็ตก็ได้รับความนิยมเพิ่มขึ้น โดยผู้ฟังสามารถรับสัญญาณจากสถานีวิทยุหลายพันสถานีจากทั่วโลก โดยมีคุณภาพเสียงสูงถึง ผ่านเครื่องรับวิทยุที่ซื้อมือถือที่รับอินเทอร์เน็ต คอมพิวเตอร์ หรือโทรศัพท์เคลื่อนที่

วิทยุแบบโต้ตอบได้ (interactive radio) และ HBB ยังได้รับการพัฒนาในเชิงพาณิชย์ โดยมีเครื่องรับ HBB แบบที่มีจอแสดงข้อมูลความจำนำเข้าแล้วในท้องตลาดแล้ว

ตารางที่ 1.2 สรุปแนวคิดวิทยุแบบขยาย

<table>
<thead>
<tr>
<th>Enhanced broadcasting</th>
<th>Delivery</th>
<th>Terminal devices (must be equipped to receive the corresponding transmission standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio anytime</td>
<td></td>
<td>PVR/ audio set; Radio set*; tablet computer; smart phone; PC; tablet computer; smart phone</td>
</tr>
<tr>
<td>Radio anywhere</td>
<td></td>
<td>Any radio set: Hifi audio set, portable radio, car radio, tablet computer, smart phone, simple mobile phone</td>
</tr>
<tr>
<td>Interactivity</td>
<td></td>
<td>FM radio with RDS (local interactivity)</td>
</tr>
</tbody>
</table>

ที่มา: ITU (2013)

ภาพที่ 3 ต่อไปนี้แสดงการเผยแพร่กระจายเสียงและการสื่อสารผ่านเครื่องขยายระบบแบบดิจิตอลหรือโทรทัศน์และไม่เป็นเชิงเส้น คาดกันว่า ความสำคัญของระบบแบบดิจิตอลจะเพิ่มขึ้นในอนาคตและจะช่วยทำให้เกิดการให้บริการที่มีคุณภาพสูงขึ้น อย่างไรก็ตาม ในระยะกลาง การเผยแพร่รายการผ่านโครงข่ายเสียงหรือระบบแบบดิจิตอลจะยังไม่สามารถแทนที่การเผยแพร่กระจายเสียงแบบเชิงเส้นสู่ประชาชนในวงกว้างได้
ภาพที่ 1.2 แนวคิดในการให้บริการแพร่ภาพกระจายเสียงโทรทัศน์ในอนาคต

<table>
<thead>
<tr>
<th>Service provision</th>
<th>Delivery</th>
<th>Target</th>
<th>Service concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>TV Radio Data</td>
<td>Broadcasting (BC) • TV tx networks • Radio tx networks • Cable networks • Satellite networks</td>
<td>General public • In coverage area • Not addressed • Some services with CA</td>
<td>Linear services • Aggregated TV services • Aggregated radio services</td>
</tr>
<tr>
<td>TV Radio Data</td>
<td>IP TV Closed Internet • Fixed broadband • Mobile broadband</td>
<td>Individuals • With broadband Internet access • Addressed</td>
<td>Non-linear services • Data services for local interactivity</td>
</tr>
<tr>
<td>TV Radio Data</td>
<td>IP Broadband (BB) Open Internet • Fixed BB • Mobile BB</td>
<td>Non-linear services • Full remote interactivity for video, sound and data services</td>
<td>HBB • Integrated BC/BB linear and non-linear services</td>
</tr>
</tbody>
</table>

ที่มา: ITU (2013)

ภาคผนวกของบทนี้ จะกล่าวถึงรายละเอียดของเทคโนโลยีที่สำคัญ ทั้งในส่วนของเทคโนโลยี สื่อ ดั้งเดิม (traditional media) และสื่อใหม่ (new media)

1.3 สรุป

พัฒนาการทางเทคโนโลยีการแพร่ภาพกระจายเสียงจะทำให้เกิดแนวโน้มของบริการวิทยุและโทรทัศน์ในอนาคตระยะปานกลาง ดังนี้

1. โครงข่ายการสื่อสารความเร็วสูงจะทำให้ประชาชนเข้าถึงบริการอินเทอร์เน็ตเบนด์ดีกว่ามากขึ้น ซึ่งสามารถใช้ในการเผยแพร่รายการวิทยุและโทรทัศน์ได้

2. พัฒนาการทางเทคโนโลยีการแพร่ภาพกระจายเสียงดิจิทัลยังจะทำให้มีความจุของช่องสัญญาณมากขึ้น ทำให้มีบริการมากขึ้น คุณภาพของภาพและเสียงดีขึ้น และครอบคลุมพื้นที่มากขึ้น

แนวโน้มของการแพร่ภาพกระจายเสียง

- ในปลายครรภ์นี้ ประเทศไทยมีภาคต่างๆ จะเปลี่ยนผ่านไปสู่ระบบโทรทัศน์ภาคพื้นดินในระบบดิจิทัลเสียสิ้นหรือเกือบจะเสร็จสิ้น
- จำนวนช่องรายการวิทยุดิจิทัลโดยเฉพาะที่ผ่านเครือข่ายอินเทอร์เน็ตมีเพิ่มขึ้น
- ช่องวิทยุกระจายเสียงในระบบ LF, MF และ HF จะปิดตัวลงไป โดยวิทยุ FM และวิทยุดิจิทัลผ่านอินเทอร์เน็ตจะเข้ามาทดแทน ทั้งนี้ ด้วยเหตุผลทางด้านทุน
- FM จะเป็นช่องทางในการกระจายเสียงที่สำคัญ และการเปลี่ยนผ่านออกจากรายการวิทยุ FM ในระบบแอนะล็อกจะไม่เกิดขึ้นในประเทศต่างๆ ยกเว้นไม่กี่ประเทศ
พัฒนาการของเทคโนโลยีโครงข่ายเคลื่อนที่จะทำให้เราสามารถสื่อสารข้อมูลด้วยความเร็วมากกว่า 3Mbps ซึ่งเพียงพอต่อการแชร์ภาพคุณภาพดีสำหรับผู้รับที่ไม่ใช้อุปกรณ์ที่ใหญ่เกินไป การเผยแพร่สัญญาณวิทยีจะมีสัดส่วนในถึงกว่าร้อยละ 70 ของบริการสื่อสารข้อมูลผ่านโครงข่ายเคลื่อนที่ทั่วหมด

โครงข่ายเบอร์ดับเบิ้ลอเดย์ที่จะมีมุ่งเน้นโครงข่ายเบอร์ดับเบิ้ลอเดย์ที่จะทำให้เกิดบริการเผยแพร่ภาพกระจายเสียงรายการวิทยุโทรทัศน์แบบขยาย (enhanced broadcasting)

แนวคิดในการให้บริการ (service concept)

- ความแพร่หลายของบริการอินเทอร์เน็ตความเร็วสูงจะทำให้เกิดผลกระทบต่อการเผยแพร่ภาพกระจายเสียงใน 2 ลักษณะ ในด้านหนึ่ง จะแข่งขันกับวิทยุและโทรทัศน์ภาคพื้นดิน เก่าแก่ และยุคใหม่ ในอีกด้านหนึ่ง จะทำให้เกิดบริการวิทยุและโทรทัศน์แบบขยาย (enhanced broadcasting)

พัฒนาการของวิทยุดิจิทัล

- หลายประเทศเริ่มเปิดบริการวิทยุดิจิทัลในระดับประเทศหรือภูมิภาคในถี่ทางความถี่ 174-230 MHz ซึ่งเดิมเคยใช้สำหรับโทรทัศน์ในระบบแอนะล็อก

- หลายประเทศจะให้บริการวิทยุดิจิทัลในถี่ทางความถี่ LF, MF และ HF เพื่อรองรับความต้องการของตลาด ทั้งในระดับประเทศ บริเวณที่มีประชากรหนาแน่นน้อย และบริการในท้องถิ่น

- บางประเทศอาจให้บริการวิทยุดิจิทัลหลายระบบควบคู่กัน เพื่อตอบสนองความต้องการต่างๆ ดังนั้นความแพร่หลายของระบบวิทยุดิจิทัลจะขึ้นอยู่กับการมีเครื่องรับสัญญาณที่ใช้ได้หลายมาตรฐานในหลายถี่ทางความถี่
จะมีการใช้มาตรฐานการเข้ารหัสที่มีประสิทธิภาพสูง เช่น DAB+ มากขึ้น โดยจะทดแทนระบบที่มีประสิทธิภาพต่ํากว่า

พัฒนาการของโทรทัศน์ดิจิทัล

- โทรทัศน์ดิจิทัลในประเทศต่างๆ จะมุ่งไปสู่ระบบความละเอียดสูง (HD) มากยิ่งขึ้น
- จอภาพของเครื่องรับโทรทัศน์จะมีขนาดใหญ่มากขึ้น เช่นเกินกว่า 50 นิ้ว ซึ่งใช้ฟอร์แมต 1080p/50 หรือ 60
- UHDTV จะถูกเริ่มใช้ในบางประเทศ โดยมีระบบบีบอัดสัญญาณที่มีประสิทธิภาพ อย่างไรก็ตาม น่าจะยังไม่มีการเผยแพร่สัญญาณในระบบ DTTB
- HEVC/MPEG-H/H.265 ซึ่งเป็นระบบบีบอัดสัญญาณรุ่นใหม่ที่มีประสิทธิภาพมากกว่า MPEG4 ถึง 2 เท่า จะถูกนำมาใช้มากขึ้น โดยในช่วงต้นอาจถูกใช้กับ UHDTV และน่าจะถูกใช้ในมาตรฐาน DTTB
- ระบบส่งสัญญาณรุ่นที่ 2 (second generation transmission system) จะถูกนำมาใช้ในประเทศต่างๆ มากขึ้น เพื่อให้ระบบ DTTB มีความจุของเครื่องจาษ์มากขึ้นเพื่อเผยแพร่สัญญาณภาพ HDTV หรือเพื่อขยายความสีที่จะคงไปจากการถูกนำไปใช้กับโทรทัศน์เคลื่อนที่
- มีการพัฒนามาตรฐานโทรทัศน์รุ่นใหม่ซึ่งเรียกว่า FOBTV ซึ่งสามารถเข้ากันได้ (compatible) กับมาตรฐาน DTTB
- ระบบ MTV ที่เกิดขึ้นจะมีหลากหลายระบบ ตั้งแต่ระบบ MTV แบบเอกเทศ และระบบที่เป็นส่วนหนึ่งของ DTTB นอกจากนี้ บริการมัลติมีเดียบนโครงข่ายโทรทัศน์เคลื่อนที่ในระบบ 3G หรือ 4G จะแพร่หลายมากยิ่งขึ้น
- บริการต่างๆ รวมทั้ง โทรทัศน์ความละเอียดสูง จะถูกใช้กับโทรทัศน์ดิจิทัลภาคพื้นดินมากขึ้น อย่างไรก็ตาม ในประเทศไทยมีต้นแหล่งถูกใช้ในบริการที่ถูกออกแบบในอนาคต มีการวางแผนให้ความถี่ใหม่ หรือใช้เทคโนโลยีการส่งสัญญาณรุ่นที่ 2 ซึ่งมีประสิทธิภาพมากขึ้น หรือปรับแต่งภาพถูกมาจากสัญญาณใหม่ หรือเตรียมการให้ผู้ใช้เทคโนโลยีเครื่องรับโทรทัศน์รุ่นใหม่
ภาคผนวก
เทคโนโลยีสื่อที่เกี่ยวข้อง

เทคโนโลยีที่เกี่ยวกับสื่อในส่วนนี้จะแบ่งออกเป็น 2 ประเภทคือ

1. เทคโนโลยีสื่อ (media technology)
 โดยจะรวมถึง โทรทัศน์ดิจิทัลภาคพื้นดิน (terrestrial digital television) และกระจายเสียงดิจิทัล (digital audio) และเทคโนโลยีอื่น ได้แก่ โทรทัศน์ดาวเทียม (satellite television) โทรทัศน์เคเบิล (cable television) โทรทัศน์ไอพี (IP television) และหนังสือพิมพ์

2. เทคโนโลยีอินเทอร์เน็ต (internet technology) โดยจะรวมถึง เทคโนโลยีระบบดิจิทัลมีสาย (wired broadband) และระบบดิจิทัลไร้สาย (wireless broadband) ตลอดจนเทคโนโลยีอื่น ๆ ที่อยู่ในระดับสูงขึ้นไปที่อยู่บนฐานของเทคโนโลยีอินเทอร์เน็ต

1. เทคโนโลยีสื่อ

1.1 เทคโนโลยีดิจิทัล (digital technology)

พัฒนาการของเทคโนโลยีดิจิทัลในด้านการเผยแพร่ภาพกระจายเสียง (digital broadcast technology) ส่งผลให้มีความจุ (capacity) ที่เพิ่มมากขึ้นในแนวดิจิทัล (transmitted bandwidth) ทำให้เกิดบริการที่มากขึ้น (more services) คุณภาพที่ดีขึ้น (better quality) และความครอบคลุมที่เพิ่มขึ้น (improved coverage)

1.1.1 โทรทัศน์ดิจิทัล (digital television)

พัฒนาการของโทรทัศน์ดิจิทัล (digital television) ทำให้เกิดการก้าวกระโดดของเทคโนโลยีใน 2 ทิศทางสำคัญได้แก่ คุณภาพของภาพ (picture quality) ที่ดีขึ้น กลายเป็นโทรทัศน์ความคมชัดสูง (high-definition television หรือ HDTV) และระบบการบีบอัดและระบบการส่ง (compression and transmission systems) ที่มีประสิทธิภาพมากขึ้น

ก) คุณภาพของภาพ

ในปัจจุบัน หลายประเทศได้ให้บริการ HDTV โดยเฉพาะโทรทัศน์ดิจิทัลภาคพื้นดินแล้ว ในขณะที่ประเทศที่เหลือก็เตรียมที่จะให้บริการ HDTV หรืออย่างน้อยก็ให้มีการผลิตและการส่ง (production and
ระบบ High Definition Television (HDTV)

ในปัจจุบัน คุณภาพสูงสุดของ HDTV สําหรับการแสดงคือ Horizontal resolution of 1920 bits และ Vertical resolution of 1080 lines โดยใช้ Progressive scanning (p) กับ Half of the frame frequency, 25 Hz หรือ 30 Hz ซึ่งเรียกว่า 1080p/25 หรือ 1080p/30 ตามลําดับ และภายหลังการ Compression, coding, and modulation บริการ HDTV จะถูกออกอากาศในระบบ 720p/50 หรือ 720p/60 ตามลําดับ สําหรับคุณภาพที่ดีเพียงพอที่จะรับชมได้กับจอภาพขนาดไม่เกิน 50 นิ้ว

อย่างไรก็ตาม เนื่องจาก scanning format มีการปรับปรุงให้เป็น 1080p/50 หรือ 1080p/60 แล้วจึงคาดว่า 1080p/50 หรือ 1080p/60 จะถูกใช้สําหรับออกอากาศโดยใช้ 1080p/50 หรือ 1080p/60 สามารถทําได้ในโครงข่ายโทรทัศน์ดิจิทัลภาคพื้นดิน (Digital Terrestrial Television Broadcasting: DTTB) ในปัจจุบัน ซึ่งเมื่อเปรียบเทียบกับ 720p/50 หรือ 720p/60 แล้ว การออกอากาศโดยใช้ 1080p/50 หรือ 1080p/60 จะสามารถได้คุณภาพที่ดีกว่ามากในจอภาพขนาดใหญ่ เทียบกับที่จะต้องมีอัตราข้อมูล (data rate) ที่สูงกว่าประมาณ 15-20%

แม้ว่าจอภาพขนาดใหญ่รุ่นใหม่ๆจะสามารถแสดงภาพ 1080p/50 หรือ 1080p/60 ได้แล้วแต่ถ้าจะเป็นต้องมีการรับสัญญาณ (set-top-box) รุ่นใหม่ที่สามารถ decode สัญญาณได้ นอกจากนี้ การรวมสัญญาณ 1080p/50 หรือ 1080p/60 และ 720p/50 หรือ 720p/60 เข้าด้วยกันไม่สามารถทําได้ แต่จะต้องความจุที่เพิ่มขึ้นประมาณ 20-30%

อาจจะเห็นได้ว่า 1080p/50 หรือ 1080p/60 น่าจะเป็น format ที่ถูกพัฒนาสำหรับจอภาพขนาดเกินกว่า 50 นิ้ว ซึ่งในปัจจุบันอาจยังเป็นเพียงตลาดเฉพาะกลุ่ม (niche market) แต่ในอนาคต 1080p/50 หรือ 1080p/60 อาจจะขยายไปสู่ตลาดทั่วไป หลังจากที่มี service-on-demand ของผู้ใช้บริการที่มี set-top-box หรือ Integrated TV set ที่เหมาะสม

Ultra High Definition Television (UHDTV) ถูกพัฒนามาจาก HDTV ในด้านการเพิ่มคุณภาพทางสี และเสียง และในขณะที่ผู้ใช้บริการ HDTV สามารถรับชมภาพได้ในมุมไม่เกิน 30 องศา ผู้ใช้บริการ UHDTV สามารถรับชมภาพได้ในมุมกว้างถึง 100 องศา
Image formats ที่ถูกกำหนดให้ใช้กับ UHDTV มี 2 ระบบ ได้แก่ UHDTV1 ซึ่งมี 3840 x 2160 pixels (or 4k system) และ UHDTV2 ซึ่งมี 7689 x 4320 pixels (or 8k system) ซึ่งความละเอียดของภาพ (resolution) ที่สูงมากนี้ (ประมาณ 8 megapixels สำหรับ UHDTV1 และประมาณ 32 megapixels สำหรับ UHDTV2) เมื่อเทียบกับ HDTV ในปัจจุบันที่มีความละเอียดของภาพประมาณ 1-2 megapixels ย่อมสามารถสร้างประสบการณ์ที่แตกต่างสำหรับผู้ใช้บริการ ทั้งนี้ UHDTV ถูกคาดหมายว่าจะเป็น the next big quality step เมื่อเทียบกับประสบการณ์การเปลี่ยนจาก Standard Definition Television (SDTV) ไปสู่ HDTV

อย่างไรก็ตาม การออกแบบแบบ UHDTV บนโครงข่าย Digital Terrestrial Television Broadcasting (DTTB) น่าจะยังไม่เกิดขึ้นในอนาคตอันใกล้ ด้วยเทคโนโลยีปัจจุบัน (DVB-T2 with MPEG4 compression) 1 ช่องของ UHDTV1 (8 megapixels) จำเป็นต้องใช้ความสามารถของระบบส่งสัญญาณ ดังนั้น ซึ่งจำเป็นต้องมีระบบการบีบอัดและระบบการส่ง (compression and transmission systems) ที่มีประสิทธิภาพมากขึ้นเพื่อจะทำให้ UHDTV สามารถให้บริการได้ทั่วไป

ตารางที่ 1: ระบบ High Definition Television (HDTV)

<table>
<thead>
<tr>
<th>ระบบ (production format)</th>
<th>ความละเอียดภาพ (picture resolution)</th>
<th>โครงข่าย (network)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTV 1920 x 1080</td>
<td>ประมาณ 2 Megapixels</td>
<td>Digital Terrestrial Television Broadcasting (DTTB) หรือ Broadband</td>
</tr>
<tr>
<td>UHDTV1 3840 x 2160</td>
<td>ประมาณ 8 Megapixels</td>
<td>จำเป็นต้องมีระบบการบีบอัดและระบบการส่ง (Compression and transmission systems) ที่มีประสิทธิภาพมากขึ้น</td>
</tr>
<tr>
<td>UHDTV2 7689 x 4320</td>
<td>ประมาณ 32 Megapixels</td>
<td>จำเป็นต้องมีระบบการบีบอัดและระบบการส่ง (Compression and transmission systems) ที่มีประสิทธิภาพมากขึ้น</td>
</tr>
</tbody>
</table>

ระบบ Three dimensional television (3DTV)

3DTV คือโทรทัศน์ 3 มิติ ซึ่งการทำให้เกิดภาพ 3 มิติ ซึ่งสามารถทำได้ 2 วิธี ได้แก่ การทำให้เกิดภาพ 3 มิติที่ผู้ใช้บริการ (โดยผู้ใช้บริการสวมแว่น 3 มิติ) และการทำให้เกิดภาพ 3 มิติที่จอภาพ (โดยจอภาพส่งแสงเข้าตาของผู้ใช้บริการ โดยในกรณีนี้ ผู้ใช้บริการไม่ต้องสวมแว่น 3 มิติ)
ในปัจจุบัน 3DTV มีการผลิตทั้งสองวิธีอย่างไรก็ดี 3DTV มักจะเป็นการให้บริการรายการเฉพาะ (specific programs) และยังไม่มีการคาดหมายว่า 3DTV จะมากแทนที่ 2DTV ในอนาคตอันใกล้ นอกเหนือจากนี้ยังมีคำเตือนว่าผู้ใช้บริการ 3DTV อาจได้รับผลกระทบต่อตาและมีอาการปวดศีรษะ

ไม่นานมานี้ สำนักงานโทรคมนาคมระหว่างประเทศ (International Telecommunication Union: ITU) ได้ออก Draft New Recommendations on 3DTV หลายฉบับ เพื่อแนะนำรายการผลิตต่าง ๆ เช่นด้าน performance requirements and criteria ด้าน digital image systems และด้าน assessment methodologies

นอกเหนือจากนี้ ระบบของ 3DTV ยังมีปัญหาด้านการใช้งานร่วมกัน (interoperability) กับบริการ HDอย่างไรก็ตาม รายการ 3DTV ยังสามารถให้บริการได้แบบ 2D บนจอภาพ HDTV

ในปัจจุบัน 3DTV อาจยังเป็นเพียงตลาดเฉพาะกลุ่ม (niche market) แต่ในอนาคต 3DTV อาจจะขยายไปสู่ตลาดทั่วไป หลังจากที่มี Service-on-demand ของผู้ใช้บริการที่มี set-top-box หรือ Integrated TV set ที่เหมาะสม

ข) ระบบการบีบอัดและระบบการส่ง (compression and transmission systems)

ระบบการบีบอัด (compression system)

ระบบการบีบอัด (compression system) ที่เป็นมาตรฐานทั่วไปคือ MPEG2 หรือ MPEG4 ซึ่งมีประสิทธิภาพมากขึ้น ในช่วงต้น ระบบ Digital Terrestrial Television Broadcasting (DTTB) ได้ใช้ MPEG2 (ITU-T H.222) สำหรับระบบการบีบอัดวิดีโอ (video compression system) ต่อมา MPEG2 ถูกพัฒนาเป็น MPEG4 (ITU-T H.264) ซึ่งมีประสิทธิภาพเป็นประมาณ 2 เท่า และถือว่าเป็นเทคโนโลยีที่พัฒนาเต็มที่แล้ว

ระบบการบีบอัดวิดีโอรุ่นที่ 3 ที่มีประสิทธิภาพสูงได้เสร็จสมบูรณ์แล้วเมื่อปี 2013 ระบบการบีบอัดประสิทธิภาพสูงนี้เรียกว่า High Efficiency Video Codec (HEVC) ซึ่งถูกพัฒนาภายใต้ความร่วมมือของ ISO/IEC MPEG และ ITU-T VCEG ทั้งนี้ HEVC หรือ MPEGH (ITU-T H.265) มีประสิทธิภาพการบีบอัดประมาณ 2 เท่าของ MPEG4 และช่วยทำให้การออกอากาศ UHDTV สามารถเป็นไปได้

อย่างไรก็ตาม เนื่องจากระบบการบีบอัดดังกล่าวไม่ได้ออกแบบมาให้ทำงานได้ (compatible) กับระบบก่อนหน้า ดังนั้น จึงต้องมีการเปลี่ยน set-top-box ให้เป็นรุ่นใหม่ที่สามารถใช้กับ MPEGH ได้ ทำให้มี
ความจำเป็นต้องมีช่วงเวลาเปลี่ยนผ่าน (transition period) เพื่อไม่ให้เกิดการหยุดชะงักของบริการ (service interruption)

ตารางที่ 42: ระบบการบีบอัด (compression system)

<table>
<thead>
<tr>
<th></th>
<th>Relative coding efficiency</th>
<th>ปีที่ออก specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG2 (ITU-T H.222)</td>
<td>1</td>
<td>1996</td>
</tr>
<tr>
<td>MPEG4 (ITU-T H.264)</td>
<td>2</td>
<td>2003</td>
</tr>
<tr>
<td>MPEGH (ITU-T H.265)</td>
<td>4</td>
<td>2013</td>
</tr>
</tbody>
</table>

ระบบการส่ง (transmission systems)

Digital Terrestrial Television Broadcasting (DTTB)

ระบบการออกแบบโทรทัศน์สามารถแบ่งออกได้เป็น 2 รุ่น (generation) คือรุ่นที่หนึ่ง (ITU-R BT.1306) และรุ่นที่สอง (ITU-R BT.1877). ทั้งนี้ รุ่นที่สองจะสามารถให้ความจุในการส่งที่สูงกว่าและมีประสิทธิภาพของกำลังที่ดีกว่ารุ่นที่หนึ่ง นอกจากนี้ Future of Broadcast Television (FOBTV) พยายามผลักดันให้เกิดพัฒนาการของ Single global DTTB standard โดยมีเป้าหมายดังนี้

- พัฒนาโมเดลของระบบนิเวศน์ในอนาคต (future ecosystem model) สำหรับการออกแบบโทรทัศน์ภาคพื้นดิน (terrestrial broadcasting) ที่ให้ความสำคัญกับด้านธุรกิจ, ด้านกำลังผู้ผลิตรายการ, ด้านเทคนิค
- พัฒนาข้อกำหนด (requirements) สำหรับการออกแบบโทรทัศน์ภาคพื้นดินรุ่นต่อไป (next generation terrestrial broadcast systems)
- สนับสนุนความร่วมมือของห้องปฏิบัติการพัฒนาโทรทัศน์ดิจิทัล (DTV development laboratories)
- เสนอแนะเทคโนโลยีที่สำคัญ (major technologies) สำหรับการออกแบบมาตรฐานใหม่
- เรียกร้องให้มีการกำหนดมาตรฐาน (standardization) ของเทคโนโลยีในแต่ละชั้น (layers) โดยองค์กรพัฒนามาตรฐานต่าง ๆ
ตารางที่ 3: พัฒนาการของ Digital Terrestrial Television Broadcasting (DTTB)

<table>
<thead>
<tr>
<th>Standard</th>
<th>ITU-R Recommendation</th>
<th>Technology</th>
<th>Payload in an 8 MHz channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Generation</td>
<td>ATSC Rec. BT.1306-6 System A</td>
<td>Single carrier</td>
<td>6.0-27.5 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>DVB-T Rec. BT.1306-6 System B</td>
<td>Multi-carrier (OFDM)</td>
<td>5.0-31.7 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>ISDB-T Rec. BT.1306-6 System C</td>
<td>Multi-carrier (segmented OFDM)</td>
<td>4.9-31.0 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>DTMB Rec. BT.1306-6 System D</td>
<td>Single carrier or multi-carrier (OFDM)</td>
<td>4.8-32.5 Mbit/s</td>
</tr>
<tr>
<td>2nd Generation</td>
<td>DVB-T2 Rec. BT.1877</td>
<td>Multi-carrier (OFDM)</td>
<td>5.4-50.4 Mbit/s</td>
</tr>
</tbody>
</table>

Mobile Television (MTV)

โครงการข่าย Mobile Television (MTV) ให้บริการการออกอากาศมัลติมีเดีย (multimedia broadcasting services) สำหรับอุปกรณ์มือถือ (handheld devices) ที่ใช้มาตรฐานการส่งที่กำหนดไว้โดยเฉพาะ (dedicated transmission standard) ของ Mobile Television (MTV) หรือผ่านส่วนการส่งที่กำหนดไว้โดยเฉพาะ (dedicated transmission part) ของ Digital Terrestrial Television Broadcasting (DTTB)

ตัวอย่างของมาตรฐานการส่งที่กำหนดไว้โดยเฉพาะ (dedicated transmission standard) ของ Mobile Television (MTV) เช่น DVB-H, DVB-NGH, DVB-SH, T-DMB, MediaFlo และ ATSC-M/H นอกจากนี้ มาตรฐานของ Digital Terrestrial Television Broadcasting (DTTB) ที่สามารถให้บริการ Mobile Television (MTV) ได้คือ ISDB-T และ DVB-T2 Recommendation ITU-R BT.2016 เสนอแนะระบบสำหรับให้บริการการออกอากาศมัลติมีเดีย (multimedia broadcasting services) สำหรับอุปกรณ์มือถือ

ตลาดของ Mobile Television (MTV) แตกต่างกันไปในแต่ละประเทศโดยจีน เกาหลีใต้ และญี่ปุ่นประสบความสำเร็จในการให้บริการ Mobile Television (MTV) โดยใช้มาตรฐาน China Mobile Multimedia Broadcasting (CMMB) มาตรฐาน T-DMB และมาตรฐาน ISDB-T ตามลำดับ อย่างไรก็ตามในหลายประเทศในยุโรป บริการ Mobile Television (MTV) บนมาตรฐาน DVB-H ได้ถูกยกเลิกระบวกจากไม่ได้รับความนิยม ส่วนสหรัฐอเมริกาให้บริการ Mobile Television (MTV) บนมาตรฐาน MediaFlo แตกต่าง
ปัญหาเช่นเดียวกัน ในขณะเดียวกัน บริการมัลติมีเดียมีคีย์บอร์ดโครงข่ายสื่อสารเคลื่อนที่ (mobile communications networks) เช่น 3G และ 4G เป็นบริการที่ได้รับความนิยมเป็นอย่างมาก

ตารางที่ 4: Mobile Television (MTV)

<table>
<thead>
<tr>
<th>Standard</th>
<th>ITU-R Recommendation</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DMB</td>
<td>Rec. BT 1833 System A Rec. BT.2016 System A</td>
<td>Terrestrial multimedia services based on the T-DAB system</td>
</tr>
<tr>
<td>AT-DMB</td>
<td>Rec. BT.2016 System A</td>
<td>Enhanced version of T-DMB, two times more efficient, backward Compatible</td>
</tr>
<tr>
<td>ATSC-M/H</td>
<td>Rec. BT 1833 System B</td>
<td>Terrestrial multimedia services; enhancement of the ATCS system</td>
</tr>
<tr>
<td>ISDB-T 1seg</td>
<td>Rec. BT.1833 System C</td>
<td>Terrestrial multimedia services; part of ISDB-T multiplex</td>
</tr>
<tr>
<td>-</td>
<td>Rec. BT.1833 System E</td>
<td>Terrestrial component to satellite multimedia services in 2.6 GHz band. Satellite system known as system E in Recommendation ITU-R BO.1130</td>
</tr>
<tr>
<td>ISDB-T</td>
<td>Rec. BT.1833 System F Rec. BT.2016 System F</td>
<td>Terrestrial multimedia services</td>
</tr>
<tr>
<td>DVB-H</td>
<td>Rec. BT.1833 System H</td>
<td>Terrestrial multimedia services; enhancement of the DVB-T System</td>
</tr>
<tr>
<td>DVB-SH</td>
<td>Rec. BT.1833 System I Rec. BT.2016 System I</td>
<td>Terrestrial component to satellite multimedia services 2.2 GHz</td>
</tr>
<tr>
<td>MediaFlo</td>
<td>Rec. BT.1833 System M</td>
<td>Terrestrial multimedia services</td>
</tr>
<tr>
<td>DVB-T2-lite</td>
<td>Draft revision Rec. BT.1833-1 System T2</td>
<td>Terrestrial multimedia services based on the DVB-T2 system</td>
</tr>
</tbody>
</table>
1.1.2 การกระจายเสียงดิจิทัล (digital audio)

การกระจายเสียงดิจิทัล (digital audio broadcasting) สามารถให้บริการทั้งในแบบครอบคลุมทั่วประเทศ (National coverage) และแบบครอบคลุมเฉพาะภูมิภาค (regional coverage) ในช่วงความถี่ 174-230 MHz (Band III) นอกจากนี้ การกระจายเสียงดิจิทัลยังถูกให้บริการในช่วงความถี่ LF, MF และ HF bands ด้วยเพื่อตอบสนองต่อความต้องการของตลาดเฉพาะพื้นที่ เช่น การครอบคลุมพื้นที่ที่มีความหนาแน่นของประชากรต่ำ

การกระจายเสียงดิจิทัลจะใช้ source coding ที่มีประสิทธิภาพสูง (เช่น DAB+) และจะมีการให้บริการกระจายเสียงดิจิทัลมากกว่า 1 ระบบในช่วงความถี่เดียวกันหรือในช่วงความถี่แตกต่างกัน เพื่อตอบสนองต่อความต้องการของตลาดที่หลากหลาย ทำให้จำเป็นต้องมีเครื่องรับที่เป็นแบบพหุมาตรฐาน (multi-standard) และพหุแถบ (multi-band)

ระบบกระจายเสียงดิจิทัลถูกแบ่งออกตามช่วงความถี่ (frequency range) คือระบบที่ใช้ความถี่ระหว่าง 30-3000 MHz จะเป็นไปตาม Recommendation ITU-R BS.1114 และระบบที่ใช้ความถี่ต่ำกว่า 30 MHz จะเป็นไปตาม Recommendation ITU-R BS.1514-2
ตารางที่ 5: กระจายเสียงดิจิทัล (Digital audio)

<table>
<thead>
<tr>
<th>Standard</th>
<th>ITU-R Recommendation</th>
<th>Audio compression</th>
<th>Transmission technology</th>
<th>RF bandwidth</th>
<th>Frequency range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAB</td>
<td>Rec. BS.1114-7; System A</td>
<td>MPEG-layer II</td>
<td>Multi-carrier (OFDM)</td>
<td>1.5 MHz</td>
<td>Band III 1.5 GHz</td>
</tr>
<tr>
<td>DAB+</td>
<td>Rec. BS.1114-7; System A</td>
<td>HE-AAC</td>
<td>Multi-carrier (OFDM)</td>
<td>1.5 MHz</td>
<td>Band III 1.5 GHz</td>
</tr>
<tr>
<td>ISDB-TSB</td>
<td>Rec. BT.1114-7; System F</td>
<td>MPEG Layer II Dolby AC-3 and HE-AAC</td>
<td>Multi-carrier (segmented OFDM)</td>
<td>0.5 MHz or 1.5 MHz</td>
<td>Band III 2.6 GHz</td>
</tr>
<tr>
<td>IBOC</td>
<td>Rec. BT.1114-7; System C</td>
<td>HD-codec</td>
<td>Multi-carrier (OFDM)</td>
<td>400 kHz</td>
<td>Band II</td>
</tr>
<tr>
<td>IBOC</td>
<td>Rec. BT.1514-2</td>
<td>HE-AAC</td>
<td>Multi-carrier (OFDM)</td>
<td>20 or 30 kHz</td>
<td>MF</td>
</tr>
<tr>
<td>DRM30</td>
<td>Rec. BT.1514-2</td>
<td>HE-AAC</td>
<td>Multi-carrier (OFDM)</td>
<td>9 or 10 kHz and multiples</td>
<td>LF/MF/HF</td>
</tr>
<tr>
<td>DRM+</td>
<td>Rec. BT.1114-7 System G</td>
<td>HE-AAC</td>
<td>Multi-carrier (OFDM)</td>
<td>100 kHz</td>
<td>Band I Band II Band III</td>
</tr>
</tbody>
</table>

1.2 เทคโนโลยีอื่น (Other technologies)
1.2.1 โทรทัศน์ดาวเทียม (Satellite television)

เทคโนโลยีการส่งสัญญาณผ่านดาวเทียมนั้นมี 2 แบบ คือแบบ C-Band และแบบ KU-Band

- แบบ C-Band จะส่งสัญญาณสู่ดาวเทียมกลั่นผ่านโลกอยู่ในช่วงความถี่ 3.4-4.2 GHz ซึ่งจะมีพื้นบริเวณ (footprint) ที่*width=100%*มีขนาดกว้าง ครอบคลุมพื้นที่ การให้บริการได้หลายประเทศ ข้อดีคือการใช้ดาวเทียมระบบนี้เหมาะที่จะใช้ในประเทศใหญ่ เพราะครอบคลุมพื้นที่ที่ให้บริการได้หลายประเทศ โดยการใช้ดาวเทียมหนึ่งดวง สามารถถ่ายทอดสัญญาณได้ทั่วประเทศและยังมีเพียงประเทศเดียวในโลกเท่านั้น แต่ข้อเสียคือ เนื่องจากครอบคลุมพื้นที่กว้างๆ ความเข้มของสัญญาณจะต่ำ จึงต้องใช้จานขนาดใหญ่ 4-10 ฟุต รับสัญญาณภาพจึงจะคมชัด

- แบบ KU-Band จะส่งสัญญาณในช่วงความถี่ 10-12 GHz สูงกว่าความถี่ของ C-Band สัญญาณที่ส่งจะครอบคลุมพื้นที่ได้น้อย จึงเหมาะสำหรับการส่งสัญญาณเฉพาะภูมิภาคในประเทศ ข้อดีคือ ความเข้มของสัญญาณสูงมาก ใช้จานขนาดเล็กๆ 60-120 เซนติเมตร ก็สามารถรับสัญญาณได้แล้วเนื่องมาสำหรับส่งสัญญาณเฉพาะภูมิภาคในประเทศ แต่ข้อเสียคือ ฟุตบริเวณ (footprint) ระบบ KU-
Band จะแคบ ส่งเฉพาะจุดที่ต้องการ ครอบคลุมพื้นที่ได้น้อยทำให้เสียค่าใช้จ่ายสูง ปัญหาในการรับสัญญาณภาพ เวลาเกิดฝนตกภาพจะไม่มี สาเหตุเนื่องมาจากความถี่ของ KU-Band จะสูงมากเมื่อผ่านเมฆฝน

ส่วนที่เป็นสายอากาศของดาวเทียม จะทำหน้าที่ส่งสัญญาณโทรทัศน์ลงมาถึงพื้นโลกรวมถึงไทยให้มีรูปสำรวจแวดวงเวลาด้วย เชนหากต้องการส่งสัญญาณโทรทัศน์มายังประเทศไทยโดยเฉพาะ ก็ออกแบบสายอากาศของดาวเทียมให้มีลำแสง (beam) ครอบคลุมเฉพาะประเทศไทย ซึ่งลักษณะของลำแสงนี้ที่ออกแบบไว้ให้ครอบคลุมเฉพาะพื้นที่ที่ต้องการนั้น เรียกว่า พุ่ยเป็นรูป (footprint) โดยลำแสงแล้วละจะมีพุ่ยเป็นรูปที่เป็นลำแสงเฉพาะของตัวเอง ซึ่งพื้นที่ที่จะได้รับสัญญาณจากดาวเทียมได้ดี หรือแรงที่สุดจะอยู่ในส่วนที่เรียกว่า ศูนย์กลาง (center) ของพุ่ยเป็นรูป หากหลุดออกไปจากศูนย์กลางนั้น ความแรงของสัญญาณก็จะลดลง

1.2.2 โทรทัศน์เคเบิล (Cable television)

เทคโนโลยีการส่งสัญญาณสายทาง (Hybrid Fiber Cable หรือ HFC) เป็นการส่งสัญญาณผ่านสายเคเบิลแก้วนำแสง (optical fiber) หรือสายโคแอกซิล (coaxial cable) โดยระบบการส่งแบบนี้ จะนำโครงข่ายเก็บนำแสงมาใช้ ระบบต้นทางจะทำให้คุณภาพของสัญญาณที่ชัดเจน และสามารถทำการโต้ตอบระหว่างผู้ใช้บริการกับสถานีได้ ได้แก่ ลักษณะเสียงและสัญญาณตรง (two-way communication) คือ ผู้ใช้บริการสามารถติดต่อกับสถานีได้โดยตรง ในการนี้ท้องถิ่นท้องถิ่นสารข้อมูล คิดต่อส่วนแบบ หรือเลือกรายการได้ตามต้องการ ซึ่งเรียกว่าบริการประเภทนี้ว่า “โทรทัศน์แบบโต้ตอบ” (interactive TV) ความถี่ที่ใช้ในระบบนี้อยู่ในช่วง 40-1000 MHz โดยที่สายเคเบิลแก้วนำแสงมีแบนด์วิธที่กว้างมาก ข้อดีและข้อเสียของระบบนี้ได้แก่

ข้อดี
1. สัญญาณภาพและเสียงที่ได้รับมีความคมชัด เทียบเท่ากับเลเซอร์ดิสก์ และซีดี ซึ่งระบบจากสัญญาณภายนอกได้ยาก
2. สามารถบริการแบบโต้ตอบ (interactive) เช่น วิทยุตามความต้องการ (video-on-demand: VOD) ได้

ข้อเสีย
1. ครอบคลุมพื้นที่ไม่กว้างมากนัก
2. ต้องใช้เวลาในการสร้างหรือขยายขนาดและต้องลงทุนมาก
3. ค่าใช้จ่ายในการดำเนินการเปลี่ยนแปลงไปตามระยะทาง
4. เป็นการส่งสัญญาณแบบ Point-to-Point ทำให้การกระจายข้อมูลถึงผู้รับ ในเวลาเดียวกันไม่มาก
(5) การดำเนินการให้บริการใหม่ ๆ เช่น ช่องบริการตามความต้องการซึ่งมีปัญหาทางเทคโนโลยี เพราะเทคโนโลยีและการให้บริการลักษณะนี้ยังคงอยู่ ในเพียงขั้นตอนของการพัฒนาเท่านั้น

1.2.3 โทรทัศน์ไอพี (IP television)

เทคโนโลยีโทรทัศน์ไอพี (IPTV) ใช้อินเทอร์เน็ตในการส่งผ่านข้อมูลจากเซิร์ฟเวอร์ ซึ่งเป็นระบบที่แตกต่างจากเดิมที่มีการเผยแพร่สัญญาณผ่านทางสายอากาศหรือผ่านทางเคเบิลค่อนข้างมาก เมื่อมีการเปลี่ยนแปลงวิธีการสื่อสารจากแต่ก่อนเป็นแบบทางเดียวคือผู้ใช้ไม่สามารถโต้ตอบกับผู้ให้บริการได้ ให้กลายเป็นระบบ 2 ทางคือ ผู้ใช้สามารถโต้ตอบไปยังผู้ให้บริการได้ เช่น การเรียงลำดับรายการโทรทัศน์ ผ่านหลังสิ่ง VOD การอื่นๆ ของห้องนัดที่จัดการให้ผู้ใช้มีส่วนร่วมกับการใช้บริการมากยิ่งขึ้น

ผู้ให้บริการไอพีที่จะทำการรับสัญญาณจากดาวเทียม จากนั้นจะทำการแปลงข้อมูล (encode) จากสัญญาณแอนะล็อกให้เป็นสัญญาณดิจิทัล จากนั้นจะทำการเข้ารหัส (encryption) เพื่อป้องกันไม่ให้ผู้ที่ไม่มีลิขสิทธิ์เข้ารหัส (STB) สามารถดูสัญญาณได้ เมื่อได้เป็นสัญญาณดิจิทัลแล้ว ข้อมูลที่ได้จะถูกนำส่งที่เครื่องขยายโทรศัพ์ ทางสัญญาณที่ได้ก็จะถูกนำส่งทางเครื่องขยายโทรศัพ์ ทางสัญญาณที่ได้ก็จะถูกนำส่งทางเครื่องขยายโทรศัพ์ ทางสัญญาณที่ได้ก็จะถูกนำส่งทางเครื่องขยายโทรศัพ์ (router) เพื่อแยกสัญญาณไอพีที่ได้กับสัญญาณโทรทัศน์ จากนั้นก็จะถูกส่งผ่านทางเครื่องขยายให้ถึงที่ STB เพื่อถอดรหัส (decryption) จากนั้นสัญญาณที่ถอดรหัสก็จะแสดงผลออกมาทางจอโทรทัศน์

1.2.4 เทคโนโลยีหนังสือพิมพ์

เทคโนโลยีที่เกี่ยวข้องกับหนังสือพิมพ์แบ่งเป็น 2 กรณี
- การหนังสือพิมพ์เป็นสื่อดั้งเดิม เทคโนโลยีที่เกี่ยวข้องคือเทคโนโลยีการพิมพ์ (print technology)
- การหนังสือพิมพ์เป็นสื่อใหม่ เทคโนโลยีที่เกี่ยวข้องคือเทคโนโลยีอินเทอร์เน็ต (internet technology) ซึ่งจะทำให้เกิดการนำเสนอเนื้อหาของหนังสือพิมพ์ผ่านสื่อใหม่ (new media) หรือสื่อสังคม (social media) ซึ่งจะคล้ายกับการที่มีการเข้มข้นต่อไป
อินเทอร์เน็ต (Internet) หมายถึง เครือข่ายคอมพิวเตอร์ขนาดใหญ่ที่มีการเชื่อมต่อระหว่างเครือข่ายหลายๆ เครือข่ายทั่วโลก โดยใช้ภาษาที่ใช้สื่อสารกันระหว่างคอมพิวเตอร์ที่เรียกว่าโปรโตคอล (protocol) แบบ TCP/IP ส่วนอินเทอร์เน็ตบรอดแบนด์ (broadband) คืออินเทอร์เน็ตแบบความเร็วสูง (high-speed internet access) ซึ่งมีอัตราบัตรสูงกว่าการใช้ในเดิม 56 กิโลบิท/วินาทีอย่างมาก บรอดแบนด์เป็นเทคโนโลยีที่ทำให้การรับสื่อใหม่ (New media) ประสิทธิภาพสูงขึ้น เช่น ท่องเว็บทั่วโลกได้เร็วขึ้น ดาวน์โหลดเอกสาร ภาพ วิดีโอและไฟล์ขนาดใหญ่ขึ้นๆ ได้เร็วขึ้น มีบริการมากมาย เช่น โทรศัพท์ วิทยุ โทรทัศน์ และการประชุมผ่านวิดีโอ (videoconferencing) เครือข่ายส่วนตัวเสมือนจริงและการบริหารจัดการระบบจากระยะไกล เล่นเกมออนไลน์ โดยเฉพาะอย่างยิ่งเกมที่มีผู้เล่นด้วยกันจำนวนมากที่มีบทบาทการเล่นออนไลน์ที่ต้องการปฏิสัมพันธ์ระหว่างผู้เล่นอย่างมาก
เทคโนโลยีบรอดแบนด์จัดหาอัตราบิตสูงกว่าแบบ dial-up มาก โดยทั่วไปไม่กระทบกับการใช้โทรศัพท์แบบสม่ำเสมอ ดังนั้นสามารถสนับสนุนอัตราขั้นต่ําของข้อมูลและเวลาแฝงสูงสุดได้ในความหมายของบรอดแบนด์ตั้งแต่ 64 kbit/s ถึง 4.0 Mbit/s ในปี 1988 มาตรฐาน CCITT ที่กำหนดว่า “บริการบรอดแบนด์” ต้องใช้ข้องทางส่งผ่านที่มีความสามารถในการสนับสนุนอัตราขั้นต่ําตั้งแต่ประมาณ 1.5 ถึง 2 Mbit/s
t
ต่อมา รายงานปี 2006 ขององค์การเพื่อความร่วมมือทางเศรษฐกิจและการพัฒนา (OECD) นิยามบรอดแบนด์ไว้ว่ามีอัตราการส่งข้อมูลที่สูงกว่า 256 กิโลบิต/วินาที และในปี 2010 Federal Communications Commission (FCC) กําหนด "บรอดแบนด์พื้นฐาน" ว่าเป็นการส่งข้อมูลความเร็วอย่างน้อย 4 Mbit/s ดาวน์โหลด (จากอินเทอร์เน็ตไปยังเครื่องคอมพิวเตอร์ของผู้ใช้) และ 1 Mbit/s อัปโหลด (จากคอมพิวเตอร์ของผู้ใช้กับอินเทอร์เน็ต)

แนวโน้มที่พบคือ การเพิ่มเกณฑ์ของความหมายของบรอดแบนด์เพิ่มขึ้นเมื่อบริการข้อมูลที่สูงขึ้นก้าวต่อมาหรือใหม่ใช้งาน ทั้งนี้ อธิการการส่งข้อมูลของไอเน็ต dial-up และบรอดแบนด์ “ไม่สมมาตร” หมายถึง อธิการการส่งข้อมูลจะสูงมากตอนดาวน์โหลด (ไปยังผู้ใช้) สูงกว่าตอนอัปโหลด (ไปยังอินเทอร์เน็ต)

2.1 บรอดแบนด์มีสาย (Wired broadband)

เครือข่ายบริการดิจิทัลแบบบูรณาการ (Integrated Services Digital Network: ISDN)

Integrated Services Digital Network (ISDN) หรือบริการโทรศัพท์แบบสวิตช์ที่สามารถขนส่งเสียงและข้อมูลดิจิทัล เป็นหนึ่งในวิธีการที่กำกับที่สุดในการเข้าถึงอินเทอร์เน็ต ISDN ถูกใช้สำหรับการประชุมทางเสียง/วิดีโอและการประยุกต์ใช้ข้อมูลบรอดแบนด์ ISDN เป็นที่นิยมมากในยุโรป แต่พบได้น้อยในอเมริกาเหนือ การใช้งานสูงสุดในปลายยุค 1990 ก่อนที่จะมีเทคโนโลยี DSL และเคเบิลโมเด็ม

อัตราพื้นฐาน ISDN ที่รู้จักกันคือ ISDN-BRI มีสอง "bearer" หรือ "B" แนวดิ่งที่ความเร็ว 64 กิโลบิต/วินาที ซึ่งทางเทคโนโลยีสามารถใช้แยกกันสำหรับเสียงหรือข้อมูลดิจิทัลพร้อมกันเพื่อให้บริการ 128 kbit/s หลาย ๆ ISDN-BRI สามารถส่งข้อมูลต่ําร่วมกันเพื่อให้ได้อัตราการส่งข้อมูลสูงกว่า 128 กิโลบิต/วินาที อัตรา ISDN ประเภทที่รู้จักกันคือ ISDN-PRI มี 23 ช่อง bearer (64 kbit/s แต่ละ bearer) ทำให้ได้อัตราการส่งข้อมูลรวม 1.5 Mbit/s (มาตรฐานสหรัฐ) ซ้าย ISDN E1 (มาตรฐาน European) มี 30 ช่อง bearer ทำให้อัตราการส่งข้อมูลรวม 1.9 Mbit/s
วงจรเช่า (Leased lines)

วงจรเช่านั้นเป็นการกำหนดให้สายเคเบิลสายใดสายหนึ่งให้ผู้เช่าได้ใช้แต่เพียงผู้เดียว ผู้ใช้อาจเป็นผู้ให้บริการอินเทอร์เน็ต หรือผู้ขอเช่าเพื่อการสื่อสารทางธุรกิจและองค์กรขนาดใหญ่ เป็นต้น ผู้ใช้อาจเป็นผู้ให้บริการอินเทอร์เน็ต หรือผู้ให้บริการอื่น ๆ สายเคเบิลที่ถูกเช่าอาจเป็นไปได้ว่า อาจเป็นสำหรับการเชื่อมต่อระบบแลนหรือเครือข่ายมหาวิทยาลัยเข้ากับอินเทอร์เน็ต หรือผู้ให้บริการอื่น ๆ โดยใช้โครงสร้างพื้นฐานของเครือข่ายโทรศัพท์ทั่วไปหรือผู้ให้บริการอื่น ๆ สายเคเบิลดังกล่าวอาจเป็นสำหรับการเชื่อมต่อที่มีความเร็วสูงกว่าข้อมูลที่ผ่านไปผ่านมาได้ วงจรเช่าถูกนำมาใช้เพื่อให้การเข้าถึงอินเทอร์เน็ตโดยตรง

เทคโนโลยี T-carrier ให้บริการตั้งแต่ 1957 และให้อัตราการส่งข้อมูลที่หลากหลายจาก 56 และ 64 กิโลบิต/วินาที (DS0) ถึง 1.5 เวย์บิต/วินาที (T1 หรือ DS1) ถึง 45 Mbit/s (DS3 หรือ T3) สาย T1 ขนส่ง 24 ช่องเสียงหรือข้อมูล (24 DS0s) ดังนั้นถูกนำมาใช้บางช่องเป็นข้อมูลและที่เหลือเป็นเสียงหรือใช้ทั้ง 24 ช่องเป็นข้อมูลอย่างเดียว สาย DS3 (T3) ขนส่ง 28 ช่อง DS1 (T1) ข้อมูลของ T1 ยังมีให้บริการในรูปของทวีคูณ DS0 เพื่อให้อัตราการส่งข้อมูลระหว่าง 56 ถึง 1500 kbit/s

สาย T-carrier ต้องใช้ปลั๊กแพร่ภาพทางพื้นฐาน ซึ่งอาจแจกแจงออกจากเครือข่ายอย่างไรก็ได้ หรือสำหรับผู้ขอเช่าจาก ISP ในประเทศญี่ปุ่นมาตรฐานเทียบเท่าคือ J1/J3 ในทวีปยุโรปที่มีมาตรฐานแตกต่างกันเล็กน้อย โดย E-carrier มี 32 ช่องผู้ใช้ (64 กิโลบิต/วินาที) บน E1 (2.0 Mbit/s) และ 512 ช่องผู้ใช้หรือ 16 E1s บน E3 (34.4 Mbit/s)

Synchronous Optical Networking (SONET) และ Synchronous Digital Hierarchy (SDH)

Synchronous Optical Networking (SONET) ในสหรัฐอเมริกาและแคนาดา และ Synchronous Digital Hierarchy (SDH) ในส่วนที่เหลือของโลก เป็นโปรโตคอลมัลติเพล็กซ์มาตรฐานที่ถูกใช้เพื่อขนส่งข้อมูลดิจิทัล เมื่อใช้แสงเลเซอร์หรือแสงที่มีธรรมชาติเหมือนกันอย่างสูงจากไดโอด เป็นแสง (LEDs) ที่อัตราการส่งข้อมูลอันมีความสามารถที่สูงกว่าทางโทรทัศน์หรือทางอินเทอร์เน็ตของเป็นต้น การขนส่งเชื่อมต่อกันของ OC-3c (แสง) หรือ STS-3c (ไฟฟ้า) ซึ่งขนส่งที่ 155.520 Mbit/s ดังนั้น OC-3c จะขนส่งข้อมูลที่ OC-1 (51.84 Mbit/s) ขนาดพื้นฐานที่ OC-3c จะมีในการขนส่งข้อมูลที่สูงสุดว่าจะถูกส่งใน OC-3c หรือลูกของ OC-3c ทำให้ได้ OC-12c (622.080 Mbit/s), OC-48c (2.488 Gbit/s), OC-192c (9.953 Gbit/s) และ OC-768c (39.813 Gbit/s) "C" ในตอนหน้าย่อยของ OC เช่นจาก "concatenated" (ต่อต้น) และแสดงการขนส่งข้อมูลที่สูงสุดที่จะเป็นไปได้ ลูกข่ายข้อมูลที่ถูก multiplexed 1, 10, 40, และ 100 จิกะบิตอีเธอร์เน็ต (GbE, 10 GbE, 40 GbE และ 100 GbE) มาตรฐาน
อินเทอร์เน็ตเคเบิล (cable internet)

เคเบิลอินเทอร์เน็ตนี้หรือการเข้าถึงด้วยเคเบิลนี้เต็มไปด้วยการเข้าถึงอินเทอร์เน็ตผ่านสาย coaxial โดยเก้า。

โดยริบังที่เดิมพ้นจากข้อมูลผ่านสายสัญญาณโทรทัศน์ สายของแดงหรือเคเบิลจะนำทางอาจเชื่อมต่อโหนด (node) ไปยังสถานที่ของลูกค้าที่จุดเชื่อมต่อที่รู้จักกันว่าเคเบิลดอร์ ใช้ระบบเคเบิลโดยมี ทุกโหนดสำหรับสมาชิกเชื่อมต่อไปยังสำนักงานกลางของบริษัทดีควิที่ หัวจุดกับต้องเกิดขึ้นกับ แกนอินเทอร์เน็ตดีโดยใช้ความหลากหลายของวิธีการ ปรากฏให้สะดวกเชื่อมต่อแกนนำทางหรือความเดียวที่ตัดและ

การส่งสัญญาณไม่ได้ถูกทำ

เช่นเดียวกันกับเทคโนโลยี DSL ซึ่งจะถูกออกแบบให้การเชื่อมต่ออย่างต่อเนื่องกับบริการอินเทอร์เน็ต ซึ่งคาดว่าเทคโนโลยีคู่ที่มีสูงอยู่ดี 400 Mbit/s สำหรับการเชื่อมต่อสูง ใน 100 Mbit/s สำหรับการบริการที่อยู่อาศัยในบางประเทศ ซึ่งอันใกล้ต่อจากผู้ใช้ มีความเร็วตั้งแต่ 384 กิโลบิต/วินาทีถึง 20 Mbit/s

การเชื่อมต่อกับอินเทอร์เน็ตมีแนวโน้มที่จะให้บริการลูกค้าที่เป็นธุรกิจมีอยู่ว่าเพราะเคเบิลที่มีอยู่มีแนวโน้มที่จะให้บริการทางที่อยู่อาศัยมากงั้นและการเพื่อการที่มีการเดินสายโคแอก

เข้าถึงในอาคาร นอกจากนี้จะเห็นจากสมาชิกเคเบิลรองแบบต่างๆสายที่อยู่ในที่ที่ต้น ดักโดยสมาชิกที่อยู่ใกล้

ความเร็วตั้งแต่ 384 กิโลบิต/วินาทีถึง 20 Mbit/s

Digital Subscriber Line (DSL, ADSL, SDSL และ VDSL)

บริการ Digital Subscriber Line (DSL) ให้การเชื่อมต่อกับอินเทอร์เน็ตผ่านเครือข่ายโทรศัพท์ ซึ่งแตกต่างจาก dial-up DSL สามารถทำงานได้โดยใช้สายโทรศัพท์เพียงสายเดียวโดยไม่ได้ขัดขวางการใช้งาน

บริการ Asymmetric Digital Subscriber Line (ADSL) เป็นแบบของ DSL ที่มีความเร็วต่างกันในทิศทางที่ต้น ดักโดยความต้องการที่ต้องการที่ติดตั้งในสถานที่ของลูกค้า

DSL เป็นชื่อที่เจาะใจอย่างกว้างขวางว่าหมายถึง Asymmetric Digital Subscriber Line (ADSL) เนื่องจากเป็นชนิด

ของ DSL ที่ถูกติดตั้งมากที่สุด การรับส่งข้อมูลในที่สุด
สำหรับผู้บริโภคทั่วไปมักจะมีตั้งแต่ 256 กิโลบิต/วินาทีถึง 20 Mbit/s ทั้งนี้ขึ้นอยู่กับเทคโนโลยี DSL สภาพสายและการดำเนินการของระดับบริการ

เทคโนโลยี ADSL การรับส่งข้อมูลในทิศทางของผู้ให้บริการ (อัปโหลด) จะต่ำกว่าในทิศทางให้กับลูกค้า (ดาวน์โหลด) ซึ่งเรียกว่าไม่สมมาตร เทียบกับ symmetric digital subscriber line (SDSL) ดาวน์โหลดและอัปโหลดมีอัตราการส่งข้อมูลเท่ากัน Very-high-bit-rate digital subscriber line (VDSL หรือ VHDSL, ITU G.993.1) เป็นมาตรฐานของ DSL ที่ได้รับการอนุมัติในปี 2001 ที่มีอัตราการส่งข้อมูลสูงสุด 52 Mbit/s ดาวน์โหลดและ 16 Mbit/s อัปโหลด บนสายทองแดง และสูงถึง 85 Mbit/s ทั้งดาวน์โหลดและอัปโหลดบนสายโคแอกเชียล

VDSL สามารถรองรับการใช้งานเชิงโทรศัพทธ์และความเอียดสูงขึ้นได้ด้วยการให้บริการโทรศัพท์ (Voice over IP) และการเข้าถึงอินเทอร์เน็ตโดยทั่วไปผ่านการเชื่อมต่อทางไกลภาพคู่สายเดียว VDSL2 (ITU-T G.993.2) เป็นรุ่นที่รองรับและเป็นการเพิ่มประสิทธิภาพของ VDSL เทคนิคใหม่ล่าสุดที่ได้รับการอนุมัติในเดือนกุมภาพันธ์ปี 2006 สามารถให้อัตราการส่งข้อมูลสูงสุด 100 Mbit/s พร้อมกันทั้งในทิศทางอัปโหลดและดาวน์โหลด แต่ข้อดีของการส่งข้อมูลสูงสุดจะประสบความเสียหายในช่วงระยะทาง 300 เมตรและประสิทธิภาพจะลดลงไปตามระยะทางและการลดลงสัญญาณที่เพิ่มขึ้น

DSL Rings (DSL R) หรือ วงแหวน DSL ที่นำ DSL หลายวงรังมาภูมิคุ้มกัน คือโครงสร้างวงแหวนที่ใช้เทคโนโลยี DSL ผ่านสายโทรศัพท์ทองแดงหลายคู่สายที่มีอยู่มาภูมิคุ้มกันเพื่อให้มีอัตราการส่งข้อมูลสูงสุดถึง 400 Mbit/s

ไฟเบอร์ทูโฮม (Fiber-to-the-home: FTTH)

Fiber-to-the-home (FTTH) เป็นหนึ่งในสมาชิกของครอบครัวของ Fiber-to-the-x (FTTx) ได้แก่ Fiber-to-the-building (FTTB), Fiber-to-the-premises (FTTP), Fiber-to-the-desk (FTTD), Fiber-to-the-curb (FTTC) และ Fiber-to-the-คลับ (FTTN). วิธีการเหล่านี้ทั้งหมดนั่นนำข้อมูลมาไกลสู่กับผู้ใช้โดยไม่แก้วน้ำแอง ความแตกต่างระหว่างแต่ละวิธีการส่วนใหญ่คือวิธีการที่จะทำอย่างไรจะนำไปแล้วนำแองให้ใกล้ชิดกับผู้ใช้มากที่สุด

วิธีการจัดส่งทั้งหมดเหล่านี้มีความคล้ายคลึงกับระบบไฮบริด fiber-coaxial (HFC) ที่ใช้เพื่อการเข้าถึงอินเทอร์เน็ตด้วยสายเคเบิล ไม่แก้วน้ำแองสามารถให้อัตราการส่งข้อมูลที่สูงขึ้นมากในระยะทางที่ไกลกว่ามากอินเทอร์เน็ตที่มีความดุลส่วนใหญ่และแบ่งแบบของเคเบิลที่จะใช้เทคโนโลยีใดแก้วน้ำแอง จากนั้นข้อมูลจะถูกเปลี่ยนไปใช้เทคโนโลยีอื่นๆ เช่น DSL เคเบิลทีวี และโทรศัพท์บ้าน สำหรับการส่งมอบสุดท้ายให้กับลูกค้า
อินเทอร์เน็ตตามสายไฟ (power-line internet)

อินเทอร์เน็ตตามสายไฟหรือที่เรียกว่า broadband over power lines (BPL) สามารถขนส่งข้อมูลอินเทอร์เน็ตตามสายไฟที่ถูกใช้สำหรับการส่งกระแสไฟฟ้าด้วย เนื่องจากโครงสร้างพื้นฐานของสายไฟฟ้าที่ได้กระจายออกไปอย่างกว้างขวางอยู่ในทุกที่ ทำให้สามารถใช้สำหรับการขนส่งข้อมูลด้วย หลักพลังงานนี้สามารถให้คนที่อยู่ในชนบทและในพื้นที่ประชากรอยู่อาศัยน้อยสามารถเข้าถึงอินเทอร์เน็ตด้วยค่าใช้จ่ายน้อยในแต่ละอุปกรณ์การส่ง สายนิยม หรือสายไฟ โดยอัตราการส่งข้อมูลจะไม่สมมาตรและมีความเร็วที่ต่ำกว่า 256 กิโลбит/วินาทีถึง 2.7 Mbit/s

BPL ให้บริการพื้นฐานของเครือข่ายที่ถูกจัดสรรให้กับบริการการสื่อสารแบบออกอากาศอื่นๆ การจัดการระหว่างบริการต่างกันเป็นปัญหาสำคัญในการใช้งานของระบบการเข้าถึงอินเทอร์เน็ตผ่านทางสายไฟ มาตรฐาน IEEE P1901 ระบุว่าโปรโตคอลสายไฟทั้งหมดจะต้องตรวจสอบการใช้งานขนส่งกระแสไฟฟ้าที่ใช้ย่อยและหลักเกี่ยวกับการเข้าไปในระบบกันนั้น

การเข้าถึงอินเทอร์เน็ตผ่านสายไฟได้มีการพัฒนาได้เร็วกว่าในยุโรปมากกว่าในสหรัฐเนื่องจากความแตกต่างทางประวัติศาสตร์ในบริการออกตัวแบบสายไฟ ซึ่งข้อมูลข้อมูลไม่สามารถผ่านไปได้ใน Step-Down ที่ใช้โดย จึงต้องใช้ repeater มาติดต่อกันที่แม่เหล็กไฟฟ้าแต่ละด้าน ในสหรัฐอเมริกามาตรฐานนี้ ใช้บริการก่อนแล้วเล็กๆ ของบ้านเหล่านี้พร้อมกันหลายในยุโรป เป็นเรื่องธรรมดาสำหรับแม่เหล็กไฟฟ้า ค่อนข้างใหญ่ที่ให้บริการกลุ่มขนาดใหญ่ 10-100 บ้าน ดังนั้นเมื่อเปรียบเทียบสภาวะทั่วไปต้องใช้ repeater มากกว่าเมื่อในยุโรปในขนาดเมืองที่เท่ากัน

2.2 ระบบแบบไร้สาย (wireless broadband)

วาย-แฟ้ม (Wi-Fi)

Wi-Fi เป็นชื่อที่นิยมสำหรับ "ลานไร้สาย" (wireless LAN) ซึ่งใช้มาตรฐาน IEEE 802.11 Wi-Fi เป็นเครื่องหมายการค้าของ Wi-Fi Alliance บ้านทำให้และรูปแบบทั้งหมดใช้ Wi-Fi เพื่อเชื่อมต่อกับคอมพิวเตอร์และสามารถเชื่อมต่อกับอินเทอร์เน็ต ยอดปีของ Wi-Fi ยังพัฒนาเป็นร้านค้าและสถานประกอบการต่างๆและในที่สาธารณะอื่นๆ Wi-Fi ใช้ในการสร้างเครือข่ายไวรัสที่ทำให้สมาร์ทโฟนและที่แม่ในบริเวณกว้างเครื่องขาย Wi-Fi ถูกสร้างขึ้นโดยการใช้เทคโนโลยีไร้สายที่เรียกว่าจุดเชื่อมต่อ (access point หรือ AP) ทำให้การเชื่อมต่อกับคอมพิวเตอร์กับคอมพิวเตอร์เพียงเครื่องขาย Wi-Fi แบบ "เฉพาะกิจ" เกิดขึ้นได้

เครื่องขาย Wi-Fi จะเชื่อมต่อกับอินเทอร์เน็ตขนาดตัวที่ใหญ่กว่าโดยใช้ DSL เคเบิลโทนและเทคโนโลยีการเข้าถึงอินเทอร์เน็ตเมื่อสอนๆ ข้อมูลมีความเร็ว 6-600 Mbit/s ระยะเวลาของบริการ Wi-Fi ค่อนข้างสั้นโดยปกติ
20-250 เมตรหรือ 65-820 ฟุต. อัตราการส่งข้อมูลและระยะทางค่อนข้างแปรไปตาม Wi-Fi โปรโตคอลสถานที่ ความเร็ว อาคารและภูมิอากาศจากอุปกรณ์อื่นๆ การใช้เสาอากาศแบบทิศทางและตัวความระมัดระวังด้านวิศวกรรม

วายแมกซ์ (WiMAX)

WiMAX (Worldwide Interoperability for Microwave Access) คือชุดของการใช้งานร่วมกันของมาตรฐาน IEEE 802.16 ซึ่งเป็นครอบครัวของมาตรฐานเครือข่ายวิทยุที่ได้รับการรับรองโดย WiMAX Forum. WiMAX เปิดการใช้งาน "ส่งมอบกิโลเมตรสุดท้ายของการเข้าถึงระบบแบบดิจิทัลเฉพาะเพื่อเป็นทางเลือกแทนเคเบิลและ DSL" เดิม IEEE 802.16 มาตรฐานนี้ปัจจุบันเรียกว่า WiMAX ประจําที่ ได้รับการตีพิมพ์ในปี 2001 และให้อัตราการส่งข้อมูล 30 – 40 เมกะбитต่อวินาที

การสนับสนุนการทำงานของเครือข่ายที่ถูกเพิ่มเข้ามาในปี 2005 ในปี 2011 ถูกลดปรับปรุงให้จะอัตราการส่งข้อมูลได้ถึง 1 Gbit/s สำหรับสถานะโดยก็เป็นที่ WiMAX เสนอระบบเครือข่ายในพื้นที่เมือง (M) มีรัศมีสัญญาณประมาณ 50 กิโลเมตร (30 ไมล์) ใกล้ก็นั่น Wi-Fi เครือข่ายแลนไว้สำาที่ที่มีระยะเพียง 30 เมตร (100 ฟุต) ซึ่งยังมีประสิทธิภาพในการกระจายอุปกรณ์มากกว่าของ Wi-Fi

ดาวเทียมบรอดแบนด์ (Satellite broadband)

ดาวเทียมสามารถให้การเข้าถึงอินเทอร์เน็ตแบบยังกีกับที่ แบบพกพาและแบบโทรศัพท์มือถือ เทคโนโลยีนี้เป็นรูปแบบหนึ่งที่สามารถให้ความเร็วสูง แต่อาจจะเป็นทางเลือกเดียวที่มีอยู่ในพื้นที่ทำเนียบ อาราชัยมูลของดาวเทียมมีตั้งแต่ 2 กิโลบิต/วินาทีถึง 1 Gbit/s และของอัปโหลดมีตั้งแต่ 2 กิโลบิต/วินาทีถึง 10 Mbit/s

การสื่อสารผ่านดาวเทียมมักจะต้องมีการสัญญาณที่ชัดเจน และจะไม่สามารถทำงานให้ดีถ้าผ่านต้นไม้และพืชผักอื่นๆ และจะได้รับผลกระทบจากความเร็วฝนและหิมะ (เรียกว่า rain fade) และอาจจำเป็นต้องมีเสาอากาศที่ขนาดใหญ่พอสมควรและต้องเล็กให้ตรงที่สุด

ดาวเทียมในวงโคจรประจําที่โดยทั่วไปก็เดิม (geostationary earth orbit: GEO) ทำงานในตำแหน่งที่กว้างที่ 35,786 กิโลเมตร (22,236 ไมล์) เนื่องจากภูมิศาสตร์ของโลก เนื่องจากความเร็วของแสง (ประมาณ 300,000 กิโลเมตรต่อวินาทีหรือ 186,000 ไมล์ต่อวินาที) ก็จะใช้เวลาหนึ่งในสี่ของวินาทีสำหรับสัญญาณวิทยุในการเดินทางจากโลกไปยังดาวเทียมและกลับมา. เมื่อเกิดความล่าช้าในการสวิตซิ่งและการ
เปลี่ยนเส้นทางอื่นๆ ที่เพิ่มเข้ามาอีกทั้งความล่าช้าจะเป็นสองเท่าเพื่อให้สามารถส่งทั้งขาไปและขากลับ ทำให้ความล่าช้าทั้งหมดเป็นได้ถึง 0.75-1.25 วินาที。

ความล่าช้าแม้จะมีขนาดใหญ่เมื่อเทียบกับรูปแบบอื่นๆ ของการเข้าถึงอินเทอร์เน็ตที่มีค่ายภาพทั่วไป ช่วง 0.015-0.2 วินาทีเท่านั้น เวลาแห่งที่ยาวว่าความล่าช้าจะต้องส่งข้อมูลเพิ่มขึ้นในการประมวลผลข้อมูลทางวิดีโอ Voice over IP กลุ่มใหญ่แล้วและการควบคุมระยะไกลของอุปกรณ์ที่จำเป็นต้องมีการตอบสนองในเวลาจริง ไม่สามารถทำได้ผ่านความเร็ว การปรับแต่งตัว TCP และเทคนิคการเร่งความเร็วของ TCP สามารถบรรเทาปัญหาเหล่านี้ได้บาง

ความเร็วในการแช่ตัว (low earth orbit: LEO) ต่ำกว่า 2,000 กิโลเมตรหรือ 1,243 ไมล์ และวงโคจรโลกกลาง (medium earth orbit: MEO) ระหว่าง 2,000 ถึง 35,786 กิโลเมตรหรือ 1,243 ถึง 22,236 ไมล์ มีความเหมือนกันน้อย ดำเนินงานที่ระดับความสูงกว่าและจะไม่ถึงในเทาแห่งที่เครื่องหนึ่งแผ่นผืน ระดับความสูงที่ต่ำกว่าให้เวลาแต่งตัวและทำให้ใช้งานอินเทอร์เน็ตนั้นได้ดีด้วยเรือไทยมีความเป็นไปได้ ระบบ LEO รวม Globalstar และ Iridium ดาวเทียม O3b Constellation นำเสนอเป็นระบบ MEO ที่มีความล่าช้า 125 ms COMMStellation เป็นระบบ LEO วางแผนจะเปิดตัวในปี 2015 คาดว่าจะมีความล่าช้าจากเพียง 7 ms

ระบบเดิมเคลื่อนที่ (Mobile broadband)

ระบบเดิมเคลื่อนที่เป็นสิ่งที่ทางการตลาดสำหรับการเข้าถึงอินเทอร์เน็ตไว้สำหรับเฉพาะ โทรศัพท์มือถือไปยังเครื่องคอมพิวเตอร์ไปโทรศัพท์มือถือ และไปยังอุปกรณ์ที่อื่นๆ ที่ใช้ในแต่ละแบบทางบริการบางอย่างของโทรศัพท์มือถืออาจให้ถูกถูกจำกัดกว่าหนึ่งสามารถเชื่อมต่อกับอินเทอร์เน็ตนี้โดยใช้การเชื่อมต่อบนรุ่นสุดล่าสุดเสื้อใดโดยใช้กระบวนการที่เรียกว่า tethering ในแต่ละอาจถูกสร้างไปในคอมพิวเตอร์เล็กที่เป็นแท็บเล็ต โทรศัพท์มือถือและในอุปกรณ์อื่นๆ หรืออาจเพิ่มเข้าไปในอุปกรณ์บางอย่างที่ใช้ในเครื่องคอมพิวเตอร์ ไม่เพียง USB และที่ USB sticks หรือ dongles หรือไม่เกี่ยวข้องกับส่วน

ทุกๆ สิบปีเทคโนโลยีของโทรศัพท์มือถือและโทรศัพท์พื้นฐานที่เกี่ยวกับการเปลี่ยนแปลงใน ธรรมชาติของพื้นฐานของการบริการ เทคโนโลยีการส่งผ่านที่ไม่ย้อนกลับที่เข้ากันได้ ผู้ถือสูงสุดของอัตราความเร็วที่สูงขึ้น คลื่นความที่ขยายขนาดที่ว่างขึ้นมีความพร้อมใช้งานได้ การเปลี่ยนแปลงนี้จะเรียกว่า generation ครั้งแรกที่โทรศัพท์มือถือได้รับอนุญาติที่สอง (2G) ปี 1991 ต่อมาเป็นยุคที่สาม (3G) ในปี 2001 และยุคที่สี่ (4G) ในปี 2006
ตารางที่ 6: Second generation (2G)

<table>
<thead>
<tr>
<th></th>
<th>Speeds in kbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM CSD</td>
<td>9.6 kbit/s</td>
</tr>
<tr>
<td>CDPD</td>
<td>up to 19.2 kbit/s</td>
</tr>
<tr>
<td>GSM GPRS (2.5G)</td>
<td>56 to 115 kbit/s</td>
</tr>
<tr>
<td>GSM EDGE (2.75G)</td>
<td>up to 237 kbit/s</td>
</tr>
</tbody>
</table>

ตารางที่ 7: Third generation (3G)

<table>
<thead>
<tr>
<th></th>
<th>Speeds in Mbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>up</td>
</tr>
<tr>
<td>UMTS W-CDMA</td>
<td>0.4 Mbit/s</td>
</tr>
<tr>
<td>UMTS HSPA</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>UMTS TDD</td>
<td>16 Mbit/s</td>
</tr>
<tr>
<td>CDMA2000 1xRTT</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>CDMA2000 EV-DO</td>
<td>2.5–4.9</td>
</tr>
<tr>
<td></td>
<td>0.15–1.8</td>
</tr>
<tr>
<td>GSM EDGE-Evolution</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

ตารางที่ 8: Fourth generation (4G)

<table>
<thead>
<tr>
<th></th>
<th>Speeds in Mbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>down</td>
<td>up</td>
</tr>
<tr>
<td>HSPA+</td>
<td>21–672</td>
</tr>
<tr>
<td></td>
<td>5.8–168</td>
</tr>
<tr>
<td>Mobile WiMAX (802.16)</td>
<td>37–365</td>
</tr>
<tr>
<td></td>
<td>17–376</td>
</tr>
<tr>
<td>LTE</td>
<td>100–300</td>
</tr>
<tr>
<td>LTE-Advanced:</td>
<td></td>
</tr>
<tr>
<td>• moving at higher speeds</td>
<td>100 Mbit/s</td>
</tr>
<tr>
<td>• not moving or moving at lower speeds</td>
<td>up to 1000 Mbit/s</td>
</tr>
<tr>
<td>MBWA (802.20)</td>
<td>80 Mbit/s</td>
</tr>
</tbody>
</table>

บริการแจกจ่ายหลายจุดท้องถิ่น (Local Multipoint Distribution Service: LMDS)

Local Multipoint Distribution Service (LMDS) เป็นการเข้าถึงเทคโนโลยีบอร์ดแบบไร้สายที่ใช้สัญญาณไมโครเวฟในการดำเนินงานระหว่าง 26 GHz และ 29 GHz ด้วยลูกออกแบบมาสร้างโครงข่ายดิจิทัล (DTV) เทคโนโลยีนี้เป็นเทคโนโลยีไร้สายอยู่กับที่แบบหนึ่งที่จุดปลายจุดสำหรับการใช้ในกิโลเมตรครุดที่ย ้อัตราข้อมูลอยู่ในช่วง 64 กิโลบิต/วินาทีถึง 155 Mbit/s. ระยะทางจะถูกจำกัดโดยทั่วไปที่
ประมาณ 1.5 ไมล์ (2.4 กิโลเมตร) แต่สามารถเชื่อมโยงได้ถึง 5 ไมล์ (8 กิโลเมตร) จากสถานีฐานมีความเป็นไปได้ในบางสถานการณ์

อย่างไรก็ตาม LMDS ถูกพบว่ามีศักยภาพทั้งในด้านเทคโนโลยีและการพาณิชย์ต่ำกว่ามาตรฐาน LTE และ WiMAX
รัฐธรรมนูญแห่งราชอาณาจักรไทย พ.ศ. 2540 เป็นจุดเริ่มต้นที่สำคัญของการเปลี่ยนแปลงในหลายๆด้าน รวมถึงกระบวนการปฏิรูประบบสื่อ ทั้งสื่อกระจายเสียง โทรทัศน์ และโทรศัพท์ รัฐธรรมนูญฉบับนั้นส่งผลต่อวิวัฒนาการและสถานภาพของสื่ออย่างมากตลอดระยะเวลากว่า 20 ปีที่ผ่านมา โดยเฉพาะในประเด็นที่เกี่ยวข้องกับการจัดสรรคลื่นความถี่ และกำหนดผลการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรศัพท์ และกิจการโทรคมนาคม ซึ่งมีผลกระทบโดยตรงต่อโครงสร้างตลาดสื่อ (media market structure)

นอกจากนี้จากรัฐธรรมนูญฉบับนั้นแล้ว รัฐธรรมนูญฉบับอื่นๆ ที่ตามมา รวมถึงกฎหมายที่เกี่ยวข้องแล้ว สภาพแวดล้อมทางสังคม เศรษฐกิจ และเทคโนโลยีที่เปลี่ยนแปลงไปก็ส่งผลต่อวิวัฒนาการและสถานภาพของสื่อเช่นกัน ความเปลี่ยนแปลงที่เกิดขึ้น โดยเฉพาะในด้านเทคโนโลยีสารสนเทศ ทำให้มีการเปลี่ยนแปลงในระบบสื่อของไทยเบื้องต้นไปด้วย พัฒนาการด้านการเข้าถึงอินเทอร์เน็ต และการปรับเปลี่ยนระบบปราศจากระบบนิยามไปสู่ระบบดิจิทัล ทำให้สื่อมีแนวโน้มจะผสมผสานเข้าหากัน (media convergence) และทำให้สื่อใหม่ (new media) มีการขยายตัวอย่างรวดเร็วในวงกว้าง

เนื่องจากโครงการศึกษาวิจัยการปฏิรูปสื่อในส่วนนี้จะแบ่งเนื้อหาออกเป็น... ส่วน ส่วนแรก จะกล่าวถึงวิวัฒนาการของสื่อต่างๆ ส่วนสุดท้ายจะกล่าวถึงการเปลี่ยนแปลงโครงสร้างเชิงสถาบัน ที่เกิดขึ้นแก่กฎหมายและกฎระเบียบ รวมถึงการจัดตั้งองค์กรที่ส่งผลต่อวิวัฒนาการและสถานภาพของสื่อในช่วงที่ผ่านมา

2.1 วิวัฒนาการของสื่อต่างๆ

ย้อนหลังไปราว 171 ปี นับตั้งแต่นำสื่อพิมพ์ลงบนแผ่นกระดาษเกิดขึ้นในประเทศไทย (หรือ สยาม ในเวลานั้น) เมื่อวันที่ 4 กรกฎาคม พ.ศ. 2387 (อุบลรัตน์ศิริยุวศักดิ์ และคณะ, 2550) จนกระทั่นถึงปัจจุบันสื่อมวลชนไทยมีพัฒนาการอย่างต่อเนื่องทั้งในแง่เทคโนโลยี บทบาทหน้าที่ ตลอดจนอิทธิพลที่มีต่อความเปลี่ยนแปลงด้านต่างๆ ของสังคม ซึ่งในแต่ละเวลานั้นมีการปฏิวัฒนาสื่อของมันขึ้นอย่างต่อเนื่องทั้งในด้านการนำเสนอ มีการเปลี่ยนแปลงด้านการจัดทำเนื้อหา สื่อพิมพ์ สื่อทีวี สื่อออนไลน์ สื่อวิทยุ ฯลฯ ในบริบทที่เปลี่ยนแปลงในแต่ละยุคสมัย

รองหรือทางประวัติศาสตร์เหล่านี้ สะท้อนให้เห็นว่าในยุคการปฏิรูปสื่อของสื่อในประเทศไทย มีการเกิดความเปลี่ยนแปลงด้านการนำเสนอ มีการเปลี่ยนแปลงทางการผลิต ฯลฯ ในบริบทที่เปลี่ยนแปลง ในแต่ละยุคสมัย

ทั้งนี้ นักการเมือง นายทุน นักวิชาการ ฯลฯ ที่มีส่วนสร้างความเปลี่ยนแปลงให้เกิดขึ้นในแต่ละยุคสมัย
รายงานในส่วนนี้มีวัตถุประสงค์เพื่อทบทวนองค์ความรู้เรื่องพัฒนาการของสื่อในประเทศไทย ซึ่ง
ประมวลจากหนังสือสื่อสารมวลชนเบื้องต้น สื่อมวลชน วัฒนธรรม และสังคม (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550) และหนังสือการกำกับหนังสือฮินดี (พิธิ์ของ รามสูต, 2556ก)เป็นหลัก โดยจะนำเสนอตามประเภทของสื่อ (media channel) 4 ประเภท ได้แก่ หนังสือพิมพ์ วิทยุกระจายเสียง วิทยุโทรทัศน์ และอินเทอร์เน็ต และที่ความเข้าใจสถานภาพปัจจุบันของสื่อในกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการ
โทรคมนาคมในประเทศไทย

- หนังสือพิมพ์

สื่อหนังสือพิมพ์เป็นสื่อที่มีอายุยิ่งนานที่สุดเมื่อเปรียบเทียบกับสื่อมวลชนสมัยใหม่ยิ่งๆ ในทางนิเทศศาสตร์มีการกล่าวกันว่าสื่อ “หนังสือพิมพ์เป็นสื่อที่ตั้งอยู่บนพื้นฐานปรัชญาของการต่อสู้ทางอุดมการณ์สื่อหนังสือพิมพ์” (อุบลรัตน์ ศิริยุวศักดิ์และคณะ, 2550) สะท้อนจากการที่หนังสือพิมพ์มีส่วนสำคัญในการขับเคลื่อนและผลักดันการเปลี่ยนแปลงสังคมการเมืองหลายครั้ง นับตั้งแต่ยุคการปกครองของสมบูรณ์ญาสิทธิราชย์ สืบเนื่องมาในยุคของการเปลี่ยนแปลงการปกครองสู่ระบบทงทิศไทย จนกระทั่งถึงยุคปัจจุบัน

หนังสือพิมพ์ในยุคสมบูรณ์ญาสิทธิราชย์

ในสมัยสมบูรณ์ญาสิทธิราชย์ หนังสือพิมพ์ถือเป็นเครื่องมือเพื่อสื่อสารความรู้ให้แก่ชนชั้นสูง ขณะที่ประชาชนทั่วไปยังไม่รู้จักหนังสือพิมพ์มากนัก ส่งผลให้กิจการหนังสือพิมพ์ที่เกิดขึ้นในยุคแรก (ปลายรัชกาลที่ 3 – รัชกาลที่ 5) ดำเนินกิจการในช่วงระยะเวลาสั้นๆ หนังสือพิมพ์บางฉบับ โดยเฉพาะหนังสือพิมพ์ที่ดำเนินกิจการโดยชาวต่างชาติ เช่น หนังสือพิมพ์บางทีวัตถุ (BANGKOK Recorder) โดยหมอวิรัจ บัลส์แพร์ ที่มาพร้อมกับเมืองเวลล์ในความรักของไทย ปีนี้กับปัญหาขาดทุน ขณะที่หนังสือพิมพ์ที่ออกโดยเจ้าหน้าที่ทหาร เช่น ราชกิจจานุเบกษา คงไม่พบใครที่จัดการ หรือที่จัดการ (Court) จะมีที่นั่นให้ข้อมูลข่าวสารทางราชการ และก็อาจข่าวผิดหลักคือที่หนังสือพิมพ์มีนักเสนอ ไม่ได้
มุ่งหวังผลกำไรทางธุรกิจ
จากหนังสือพิมพ์ที่ออกโดยชาวต่างชาติ ต่อเนื่องมาถึงการออกหนังสือพิมพ์โดยกลุ่มเจ้านายที่ได้รับการศึกษาจากต่างประเทศและราชสำนัก จนกระทั่งในสมัยรัชกาลที่ 5 จึงเริ่มมีหนังสือพิมพ์ที่ออกโดยสามัญชน เช่น สยามประเภทสุนทรพิทยา getById ก.ศ.กุลบพ และ ดุลยการพจน์กิจ โดย เทียนรณรงค์ซึ่งได้รับความนิยมจากคนอ่านมาก เนื่องจากเนื้อหาในหนังสือพิมพ์มีความแตกต่างจากหนังสือพิมพ์ที่ออกโดยราชสำนักและเจ้านาย กล่าวคือ มุ่งเรียกร้องให้มีการเลิกทาส เสรีภาพในการแสดงออก ตรวจสอบการท่าทันของฐานทัพ เป็นต้น ซึ่งการนำเสนอเนื้อหาดังกล่าวส่งผลให้สามัญชนผู้ออกหนังสือพิมพ์บางรายถูกดำเนินคดีจากการอ่าน ต่อมาในสมัยรัชกาลที่ 6 กล่าวกันว่ารัชกาลที่ 6 ทรงโปรดปรานงานหนังสือพิมพ์ ประกอบกับในสมัยนั้นได้มีแนวทางการกระจายสถานการศึกษาแก่ประชาชน ส่งผลให้ในยุคนั้นมีหนังสือพิมพ์พุ่งมากขึ้นกว้างขวางและเข้าถึงประชาชนมากขึ้น อย่างไรก็ตาม มีการยุติการพิมพ์หนังสือพิมพ์เพื่อขจัดความขัดแย้งในยุคดังกล่าว หนังสือพิมพ์จึง减少了ความรุนแรง เข้าถึงประชาชนได้มากขึ้นกว่าเดิม ไม่ได้จัดส่งก่อนทางเพศพิมพ์ที่เป็นขั้นสูงที่นั้น แต่ในยุคดังกล่าวก็ยังเป็นหนังสือพิมพ์ในสมบูรณ์ภูมิพิامةร้าย ดังนั้นหนังสือพิมพ์ที่ถูกยั้งไม่ได้เสียหายในการนำเสนอได้อย่างเดิมที่ โดยสื่อหนังสือพิมพ์จะถูกควบคุมโดยพระราชบัญญัติว่าด้วยเอกสารและหนังสือพิมพ์ พ.ศ. 2464 ซึ่งมีเนื้อหาเกณฑ์ผู้มีอำนาจพิพิธ์ต้องยอมถูกควบคุมจากสมุหเทศาภิบาลแห่งมณฑลก่อนที่จะดำเนินการพิมพ์ จึงทำให้กับรัฐราชมีอำนาจที่จะ “เซ็นเซอร์” เนื้อหาดังกล่าว ก่อนที่จะเผยแพร่สู่สาธารณะ

หนังสือพิมพ์ในยุคเปลี่ยนแปลงการปกครอง

แม้หน้าประวัติศาสตร์การเมืองการปกครองของประเทศไทย จะเปลี่ยนผ่านจากการปกครองในระบอบสมบูรณาญาสิทธิราชย์สู่การปกครองในระบอบประชาธิปไตยเป็นการยุติและมีพระมหากษัตริย์ทรงเป็นผู้นำในการปกครอง และการเมืองของประชาชนเป็นครั้งแรก แต่ในทางปฏิบัติจะพบว่าหนังสือพิมพ์มีอำนาจควบคุมการควบคุม จำกัดและละเมิดสิทธิเสรีภาพของผู้มีอานาจให้เป็นระยะ หลังจากวันนั้นเป็นต้นมาที่จะควบคุมการพิมพ์ของประชาชนเป็นการเด็ดขาด แต่ในสมัยนั้นหนังสือพิมพ์หลายฉบับเริ่มไปแนวทางการเมือง คือ ฝ่ายอิสระ ฝ่ายรัฐบาล ฝ่ายนิยมกษัตริย์ ซึ่งจากนั้นสื่อหนังสือพิมพ์เหล่านี้ก็มีอำนาจพิพิธ์ที่จะออกแนวความคิดของตนเองได้ สิ่งเหล่านี้เป็นต้นมาที่จะควบคุมการพิมพ์ของประชาชนในสมัยนั้น มีแนวความคิดของประชาชนที่มีอานาจในการพิมพ์ที่จะมีการแก้ไขและทบทวนในทางปฏิบัติของหนังสือพิมพ์ ดังนั้นสื่อหนังสือพิมพ์เป็นสื่อที่มีอำนาจในการสื่อสารอย่างมีตัวตน

ในยุคที่ประเทศไทยมีรัฐบาลแต่ละการทรงการทรง แซว สิทธิ์จอมพล พ. พิบูลสงคราม (พ.ศ. 2481-2487) ก่อต่อมาทรงการควบคุมหนังสือพิมพ์อย่างเข้มข้น ผ่านพระบัญชานิยมการพิมพ์ พุทธศักราช 2484 หรือในสมัยจอมพลสุธุภูมิ บุญราช จอมพลสุทธิ ฯ ฯ ฯ และจอมพลประยูร ราชกิจจานุเบกษา (พ.ศ. 2501-2516) ก่อต่อมาทรงการควบคุมหนังสือพิมพ์อย่างเข้มข้นโดยใช้อำนาจจากพระบัญชานิยมการพิมพ์ฉบับที่ 17 แม้กระทั่งในยุคที่มี
รัฐบาลพลเรือน เช่น รัฐบาล ม.ว. ศักดิ์ชัย ปราโมช (พ.ศ. 2518) ก็มีการควบคุมสื่อโดยประกาศพระราชบัญญัติว่าด้วยความมั่นคงแห่งชาติ พุทธศักราช 2518 ที่ให้อำนาจทางการสามารถยึดแท่นพิมพ์ได้

เสรีภาพสื่อได้รับการต่อต้านไปพร้อม ๆ กับเสรีภาพทางการเมืองของประชาชน ในช่วงปี พ.ศ. 2516 หลังเหตุการณ์ 14 ตุลาคม พ.ศ. 2516 ประชาชนไทยมีเสรีภาพมากขึ้น สื่อหนังสือพิมพ์ในยุคนี้ก็มีเสรีภาพมากขึ้นเช่นกัน โดยจะเห็นว่าการออกหนังสือพิมพ์แนวการเมืองได้เห็นในยุคนี้ เช่น ประชาชาติ ประชาธิปไตย และ Voice of the Nation เป็นต้น อย่างไรก็ตาม บรรยากาศแห่งเสรีภาพก็หายไปอีกครั้งจากเหตุการณ์ 6 ตุลาคม 2519

ยุคทองของหนังสือพิมพ์

บรรยากาศแห่งเสรีภาพของสื่อหนังสือพิมพ์เริ่มเกิดขึ้นอีกครั้ง ในช่วงปี พ.ศ. 2523 เป็นต้นมา ในยุคนี้กิจการหนังสือพิมพ์ที่มีความกว้างหน้าเริ่มต้นขึ้นที่เรียกว่า “อุตสาหกรรมหนังสือพิมพ์” ที่มีการนำเทคโนโลยีใหม่มาใช้ในการผลิตและการสื่อข่าว พร้อมกับการขยายตัวของธุรกิจนิเทศ ซึ่งต่อมาถึงได้จากการโฆษณากระจายเป็นรายได้หลักและเป็นปัจจัยความยั่งยืนของหนังสือพิมพ์ฉบับต่าง ๆ

ในยุคนี้ มีหนังสือพิมพ์หลากหลายฉบับ ซึ่งแต่ละฉบับต่างมีอัตลักษณะเฉพาะตัว และมียอดขายเพิ่มมากขึ้น เช่น หนังสือพิมพ์จิบจิบเป็นหนังสือฉบับที่เน้นการนำเสนอข่าวชาติบ้านที่คนให้ความสนใจอย่างไร้รีบ เดลินิวส์ หนังสือพิมพ์แบบผู้นั่งขับขี่ที่เน้นการนำเสนอข่าวการเมือง เศรษฐกิจ สังคม และการวิเคราะห์ที่มีมิติข่าว The Nation เป็นต้น ซึ่งการตีพิมพ์ของกิจการหนังสือพิมพ์สอดรับไปกับบริบททางสังคมการเมืองที่มีลักษณะเป็นประชาธิปไตยและสิทธิเสรีภาพของกลุ่มคนชนชั้นกลาง

หนังสือพิมพ์กับการเผชิญความท้าทายจากสื่อใหม่

การเกิดขึ้นของสื่อใหม่ (new media) เช่น อินเทอร์เน็ต หรือ สื่อสังคมออนไลน์ (social media) ได้สร้างความเปลี่ยนแปลงทางประการ เช่น ปรับเปลี่ยนจากการสื่อสารทางเดียวสู่การสื่อสารสองทาง ผู้รับสารสามารถเป็นผู้ผลิตสารได้ในเวลาเดียวกัน การปรับเปลี่ยนนี้ทำส่งผลให้เกิดการเปลี่ยนแปลงอื่น ๆ ที่เกี่ยวกับการที่สื่อสารนั้นจะทำให้เกิดการเปลี่ยนแปลงทางเศรษฐกิจ สังคม และการวิเคราะห์วัฒนธรรมอย่างมาก มิติข่าว The Nation เป็นต้น ซึ่งการตีพิมพ์ของกิจการหนังสือพิมพ์สอดรับไปกับบริบททางสังคมการเมืองที่มีลักษณะเป็นประชาธิปไตยและสิทธิเสรีภาพของกลุ่มคนชนชั้นกลาง
สื่อวิทยุในฐานะเครื่องมือโฆษณาชวนเชื่อของรัฐบาล

สื่อวิทยุกระจายเสียงของประเทศไทยมีการพัฒนาในฐานะการออกเสียงของรัฐ โดยเฉพาะรัฐบาลแต่ละการพัฒนาในหลายยุคหลายสมัย โดยมาใช้เป็นเครื่องมือในการประกาศการเปลี่ยนแปลงการปกครอง การสร้างระบบการปกครองใหม่ ตลอดจนการโฆษณาชวนเชื่อต่างๆ

ในสมัยของ จอมพล ป. พิบูลสงคราม เป็นยุคที่เน้นนโยบายชาตินิยม และได้มีการกำหนดนโยบายวางแผนปฏิบัติการที่ประชาชนควรปฏิบัติตาม หรือที่เรียกว่าข้อบังคับในชื่อ “รัฐนิยม” โดยรัฐบาลมีการประกาศผลิตภัณฑ์ข้อมูลต่อสัญลักษณ์ของชาติ ซึ่งสื่อวิทยุเป็นเครื่องมือสำคัญในการดำเนินการดังกล่าว

ในสมัยของจอมพล ป. พิบูลสงคราม เป็นสมัยที่รัฐบาลมีนโยบายสหภาพที่ใกล้ชิดกับประเทศญี่ปุ่น และมีการประกาศเข้าร่วมกับฝ่ายอักษะและประเทศญี่ปุ่นในช่วงสงครามโลกครั้งที่ 2 ช่วงปี พ.ศ. 2484-2488 และได้เกิดกลุ่มเสรีไทย นำโดยนายปรีดี พนมยงค์ ได้ดำเนินการต่อต้านการดำเนินการดังกล่าวของรัฐบาลอย่างลับๆ ซึ่งสื่อวิทยุเป็นเครื่องมือสำคัญในการดำเนินการดังกล่าว

หลังจากสงครามโลกครั้งที่ 2 การโฆษณาชวนเชื่อและ参考资料ให้ประชาชนปฏิบัติตามนโยบายชาตินิยมและรัฐนิยมได้ดีต่อเนื่องกับการดำเนินการของรัฐบาล ป. พิบูลสงคราม ซึ่งภายใต้รัฐบาลรัฐบาลยังมีการประกาศข้อมูลต่อสัญลักษณ์ของชาติ ซึ่งมีสื่อวิทยุเป็นเครื่องมือสำคัญในการดำเนินการตามนโยบายของรัฐบาล
วิทยุ พ.ท.ท. บริษัทไทยโทรทัศน์ จำกัด ซึ่งถือเป็นสถานีวิทยุกระจายเสียงแห่งแรกที่จดทะเบียนในรูปบริษัท โดยมีการโฆษณาการเป็นผู้ถือหุ้นใหญ่ และยังเป็นสถานีวิทยุกระจายเสียงแห่งแรกของประเทศไทยที่ออกอากาศในระบบเอฟเอ็ม

นอกจากการก่อตั้งสถานีวิทยุกระจายเสียงที่จดทะเบียนในรูปบริษัทแห่งแรกแล้ว ในปี พ.ศ. 2493 รัฐบาลยังได้ประกาศใช้พระราชบัญญัติการโฆษณากระจายเสียง ผลจากการประกาศใช้พระราชบัญญัติดังกล่าว คือการยกเลิกการจดทะเบียนเครื่องรับวิทยุ ทำให้ประชาชนสามารถเป็นเจ้าของเครื่องรับวิทยุได้โดยไม่ต้องขออนุญาตจากทางราชการ รวมทั้งยังเปิดโอกาสให้หน่วยงานราชการอื่นๆ จัดตั้งสถานีวิทยุได้ ผลที่เกิดขึ้นคือ หน่วยราชการทหารจึงได้จัดตั้งสถานีวิทยุกระจายเสียงขึ้นในกรุงเทพฯและต่างจังหวัดอีกหลายสถานี โดยในยุคนี้รัฐบาลได้กอบกู้ตามการประกาศบทบาทหน้าที่ต่างๆ เชน ราชการเพลง ราชการสรรพวิทยุ ราชการลือ รายการตอบปัญหา เป็นต้น ซึ่งหลายสถานีได้รับความนิยมจากประชาชนสูง ถือได้ว่าเป็นมิติใหม่ของการวิทยุกระจายเสียงในประเทศไทย (อุบลรัตน์ ศิริวุฒิพงศ์ และคณะ, 2550)

สื่อวิทยุ “อาวุธ” ของรัฐบาลเผด็จทหาร

เมื่อทุ่นทรัพย์ศรัทธาการเมืองการปกครองไทยเปลี่ยนผ่านสู่สิ่งคัดสรรการทหารโดยสมบูรณ์ ภายใต้การบังคับของกองทัพ สุภิตติ ธนาชัยพงศ์ ประกาศศักดิ์สิทธิ์สื่อวิทยุก็เปลี่ยนผ่านไปด้วยเช่นกัน โดยในยุคนี้ รัฐบาลได้ขยายเครือข่ายวิทยุกระจายเสียง 2 ส่วน คือ สถานีวิทยุแห่งประเทศไทย ของการประชาสัมพันธ์ และสถานีวิทยุ บนบ. ในเครือกองทัพบกให้ครอบคลุมทั่วทุกพื้นที่ เพื่อวัตถุประสงค์ที่สำคัญ 2 ประการ คือ 1) เพื่อใช้สื่อวิทยุเป็นเครื่องมือทางการเมืองในการปฏิบัติการจิตวิทยาต่อต้านลัทธิคอมมิวนิสต์ ซึ่งการดำเนินการในส่วนนี้ ได้รับงบประมาณสนับสนุนบางส่วนจากรัฐบาลสหรัฐอเมริกา 2) เพื่อเปิดให้ออกชนเข้ามาดำเนินกิจการวิทยุกระจายเสียงและแบ่งผลประโยชน์กับกองทัพ โดยเนื้อหาส่วนใหญ่ที่ปรากฏในรายการวิทยุ คือ เนื้อหาที่ประชาชนต้องการ มีการยึดถือหลักการควบคุมสื่อไว้ด้วยมิตรภาพ

จากยุคสมัยของการปลด สุภิตติ ธนาชัยพงศ์ ต่อเนื่องมาถึงยุคของผู้สืบทอดอำนาจ คือ จอมพลถนอม กิตติขจร ได้ใช้สื่อวิทยุเป็นเครื่องมือดำเนินการที่สำคัญที่สุดในการต่อต้านลัทธิคอมมิวนิสต์

สามารถกล่าวได้ว่า ในยุคเผด็จทหารทั้งหมด ในระหว่างปี พ.ศ. 2501-2515 เป็นช่วงที่สื่อวิทยุอยู่ในอำนาจของรัฐบาลเผด็จทหารอย่างสมบูรณ์ โดยในปี พ.ศ. 2515 กองทัพบกมีสถานีวิทยุทั้งสิ้น 64 แห่ง และกรมประชาสัมพันธ์มีสถานีวิทยุทั้งสิ้น 21 แห่งทั่วประเทศ (อุบลรัตน์ ศิริวุฒิพงศ์ และคณะ, 2550)

ต่อมาในช่วงปี พ.ศ. 2516 และ ปี พ.ศ. 2519 ได้เกิดเหตุการณ์ทางการเมืองซึ่งเกิดขึ้นที่จอมพลถนอม กิตติขจร และจอมพลดุษฎีบุรี ทำให้สื่อวิทยุสื่อข่าววันละ 77
คน และบาดเจ็บจํานวน 857 คน จากเหตุการณ์ที่ทหารสลายการชุมนุม ทำให้รัฐบาลเผด็จการทหารสูญเสียความชอบธรรมและถูกลดบทบาททางการเมืองลง (คริส เบเคอร์ และ ผาสุก พงษ์ไพจิตร, 2557) ประเทศไทยปลอดจากรัฐบาลทหารได้ไม่นาน ภายหลังจากเกิดเหตุการณ์ 6 ตุลาคม 2519 ซึ่งเป็นเหตุการณ์การปราบปรามนิสิตนักศึกษาและประชาชนผู้ร่วมชุมนุมประท้วงการเดินทางกลับประเทศของจอมพลถนอม กิตติขจร อดีตนายกรัฐมนตรี ที่มหาวิทยาลัยธรรมศาสตร์และท้องสนามหลวง และฝ่ายนิติบุคคลากรทางการเมืองว่าเป็นฝ่ายคอมมิวนิสต์

จากเหตุการณ์การต่อสู้ทางการเมืองครั้งนี้สำคัญที่ส่งผลกระทบต่อเหตุการณ์ คือวิทยุไม่ได้มีบทบาทในการสนับสนุนฝ่ายผู้ชุมนุม ในทางตรงกันข้ามมันได้เป็นเครื่องมือทางการรัฐในการโฆษณาชวนเชื่อ ปิดกั้นและบิดเบือนข้อมูลข่าวสาร ทั้งนี้เมื่อจ่าสมัครทหารชั้นต้น นักวิทยุถูกใช้เป็นช่องทางของรัฐในการสื่อสารทางวิทยุซึ่งต่างจากสื่อหนังสือพิมพ์ที่มีพื้นฐานอยู่บนการต่อสู้เพื่ออุดมการณ์ประชาธิปไตยมากกว่า

ภายหลังเหตุการณ์ 6 ตุลาคม พ.ศ. 2519 คณะปฏิรูปการปกครองแผ่นดินนำโดยพลเรือเอกสงัด ชะลออยู่ได้เข้ายึดอำนาจการปกครองและได้ควบคุมการนำเสนอข่าวทางวิทยุอย่างเข้มงวด ตลอดจนบังคับให้ทุกสถานีที่มีข้อมูลข่าวสารจากสถาบันวิทยุแห่งประเทศไทยวันรับ 4 ครั้ง รวมถึงการกำหนดให้ทุกสถานีถ่ายทอดรายการ"เพื่อแผ่นดินไทยจากกองบัญชาการทหารสูงสุด" ซึ่งเกิดขึ้นอย่างต่อเนื่องตั้งแต่ก่อนคอมมิวนิสต์แห่งประเทศไทยได้ใช้สื่อวิทยุ "เสียงประชาชนแห่งประเทศไทย" เป็นกระบอกเสียงในการตอบโต้รัฐบาล (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

ยุคแห่งการเติบโตของทุกกลุ่มวิทยุกระจายเสียง
หลังปี พ.ศ. 2524 สถานการณ์ความขัดแย้งทางการเมืองระหว่างฝ่ายซ้ายและฝ่ายขวาเริ่มคลี่คลายลง สื่อวิทยุเริ่มเพื่อพูดคุยถึงความขัดแย้ง การมีการทำข่าวสารทางวิทยุต่างประเทศวันรับ 4 ครั้ง รวมถึงการกำหนดให้ทุกสถานีถ่ายทอดรายการ"แผ่นดินไทย"จากกองบัญชาการทหารสูงสุด ซึ่งมีมีนิติบุคคลากรทางการเมืองว่าเป็นคู่ขัดแย้งของรัฐบาลไม่ได้เข้ายึดอำนาจการปกครอง และนักวิทยุที่ใช้สื่อวิทยุ "เสียงประชาชนแห่งประเทศไทย" เป็นกระบอกเสียงในการตอบโต้รัฐบาล (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

สื่อวิทยุในบริบทของรัฐธรรมนูญ พ.ศ. 2540 และ รัฐธรรมนูญ พ.ศ. 2550
หลังจากเกิดเหตุการณ์ "พฤษภาทมิฬ" ในปี พ.ศ. 2535 ที่มีประชาชนโดยเฉพาะกลุ่มชนชั้นกลางออกมาชุมนุมประท้วงต่อต้านรัฐบาลพลเอกสุจินดา คราประยูร ซึ่งไม่ได้มาจากการเลือกตั้ง ได้เกิดกระแสการปฏิรูประบบการเมืองการปกครอง และนักวิทยุพยายามประกาศใช้รัฐธรรมนูญแห่งราชอาณาจักรไทย พ.ศ. 2540 โดยรัฐธรรมนูญฉบับนี้ ได้มีข้อกำหนดในการจะปฏิรูประบบการเมือง ขยายสิทธิ เสรีภาพ และสร้างการมีส่วนร่วมของพลเมืองในการเมือง การตัดสินใจของพลเมืองในการเมือง ตลอดจนสร้างความโปร่งใสให้เกิดขึ้นในระบบการเมืองไทย

39
ในส่วนที่เกี่ยวกับสื่อ ในรัฐธรรมนูญฯ พ.ศ. 2540 ได้มีบทบัญญัติที่เป็นหลักประกันเสรีภาพในการแสดงออกของประชาชน โดยทั่วไปแทรกแซงหรือปิดกั้นเนื้อหาในสื่อต่างๆ รวมถึงวิทยุกระจายเสียง นอกจากนี้ยังกำหนดให้มีการจัดตั้ง “องค์กรอิสระ” เพื่อจัดสรรคลื่นความถี่ ดังที่ปรากฏในมาตรา 40 รัฐธรรมนูญฯ พ.ศ. 2540

“คลื่นความถี่ที่ใช้ในการส่งวิทยุกระจายเสียง วิทยุโทรทัศน์ และวิทยุโทรคมนาคม เป็นทรัพยากรสื่อสารของชาติเพื่อประโยชน์สาธารณะ

ให้มีองค์กรของรัฐที่เป็นอิสระทำหน้าที่จัดสรรคลื่นความถี่ตามวรรคหนึ่ง และกำกับดูแลการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม ทั้งนี้ ตามที่กฎหมายบัญญัติ

การดำเนินการตามวรรคสองต้องคำนึงถึงประโยชน์สูงสุดของประชาชนในระดับชาติและระดับย่อยอื่นทั้งในด้านการศึกษา วัฒนธรรม ความมั่นคงของรัฐ และประโยชน์สาธารณะอื่น รวมทั้งการแข่งขันโดยเสรีอย่างเป็นธรรม” (มาตรา 40 รัฐธรรมนูญฯ พ.ศ.2540) (พิธีรอง รามสูต, 2556)

วัตถุประสงค์สำคัญของการกำหนดให้มีการจัดตั้งองค์กรอิสระเพื่อจัดสรรคลื่นความถี่ คือ เพื่อให้ทุกภาคส่วนได้มีโอกาสเข้าถึงและใช้ประโยชน์จากคลื่นความถี่ได้อย่างเท่าเทียม ซึ่งแตกต่างจากในอดีตที่กิจการวิทยุกระจายเสียงอยู่ภายใต้อำนาจของรัฐโดยสมบูรณ์ และหน่วยงานต่างๆ ของรัฐที่เป็นเจ้าของสถานีโทรทัศน์ของประเทศจากความเป็นเจ้าของดังกล่าว ได้ให้สู่บริษัทเอกชนเป็นผู้ดำเนินการ ผลที่เกิดขึ้นคือรายการต่างๆ ในวิทยุเน้นรายการบันเทิงเป็นส่วนใหญ่เนื่องจากรายการบันเทิงสามารถคืนทุนได้อย่างรวดเร็ว และสร้างผลกำไรได้จำนวนมาก (พิธีรอง รามสูต, 2556)

จากบทบัญญัติในรัฐธรรมนูญฯ พ.ศ. 2540 นำมาสู่การประกาศใช้พระราชบัญญัติองค์กรจัดสรรคลื่นความถี่ พ.ศ. 2543 เมื่อวันที่ 7 มีนาคม 2543 โดยในนี้ในสาระสำคัญของพระราชบัญญัติดังกล่าว คือ การให้สิทธิประชาชนในการเข้าถึงและใช้คลื่นความถี่วิทยุโทรทัศน์ไม่มีข้อจำกัด การให้สิทธิประชาชนในการเข้าถึงและใช้คลื่นความถี่วิทยุโทรทัศน์ไม่มีข้อจำกัด โดยภาคประชาชน ดังกล่าวต้องดำเนินการโดยมีวัตถุประสงค์เพื่อประโยชน์สาธารณะและไม่แสวงหากำไรในการประกอบ ซึ่งถือเป็นก้าวแรกของการกระจายข้อมูลในหลายพื้นที่ทั่วประเทศ (วิชาญ อุ่นอก, 2555) นอกจากนี้ยังกำหนดให้มีการจัดตั้งองค์กรอิสระเพื่อกำกับดูแลกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และในส่วนของกิจการโทรคมนาคม ตลอดจนเรื่องการจัดสรรคลื่นความถี่ องค์กรอิสระจึงดำเนินการอย่างมีประสิทธิภาพ (กทช.) ซึ่งจะมีหน้าที่ในการกำกับดูแลในส่วนของกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และคณะกรรมการกิจการโทรคมนาคมแห่งชาติ (กทช.) ที่มีหน้าที่ในการกำกับดูแลในส่วนของกิจการโทรคมนาคม โดยในกฎหมายกำหนดให้หัวหน้าขององค์กรทำงานเป็นคณะกรรมการร่วมกัน (มติขอนออนไลน์, 2554)
การดําเนินงานในทางปฏิบัติพบว่า ในส่วนของคณะกรรมการกิจการกระจายเสียงและกิจการโทรทัศน์แห่งชาติ (กสช.) ประสบปัญหาเรื่องการสรรหาคณะกรรมการ โดยถูกวิพากษ์วิจารณ์เรื่องความโปร่งใสในการสรรหาและการคัดเลือกผู้เข้าร่วมคัดเลือก กระทั่งในท้ายที่สุดมีการฟ้องร้องต่อศาลปกครองเพื่อที่คณะกรรมการสรรหาร ต่อมา ในวันที่ 28 กันยายน พ.ศ. 2549 ศาลปกครองสูงสุดก็ได้มีคำพิพากษารับฟังการร้องทุกข์ที่สมควรได้วินิจฉัย 6 คน (มติชนออนไลน์, 2554)

ต่อมาได้มีการประกาศใช้วรรธิธรรมนูญแห่งราชอาณาจักรไทย พ.ศ. 2550 และในมาตรา 47 ของรัฐธรรมนูญฯ พ.ศ. 2550 ก็ได้มีการบัญญัติให้มีการตั้งองค์กรอิสระให้มีองค์กรอิสระองค์กรหนึ่งซึ่งทําหน้าที่จัดสรรคลื่นความถี่และกํากับการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม ตั้งในมาตรา 47 รัฐธรรมนูญฯ พ.ศ. 2550

“คลื่นความถี่ที่ใช้ในการส่งวิทยุกระจายเสียง วิทยุโทรทัศน์ และโทรคมนาคม เป็นทรัพยากรสื่อสารของชาติเพื่อประโยชน์สาธารณะ

ให้มีองค์กรของรัฐที่เป็นอิสระองค์กรหนึ่งที่มีหน้าที่จัดสรรคลื่นความถี่ตามวรรคหนึ่ง และกํากับการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม ทั้งนี้ ตามที่กฎหมายบัญญัติ

การดําเนินการตามวรรคสองต้องคํานึงถึงประโยชน์สูงสุดของประชาชนในระดับชาติและระดับท้องถิ่น ทั้งนี้ในด้านการศึกษา วัฒนธรรม ความมั่นคงของรัฐ ประโยชน์สาธารณะอื่น และการแข่งขันโดยเสรีอย่างเป็นธรรม รวมทั้งต้องจัดให้ภาคประชาชนมีส่วนร่วมในการดําเนินการสื่อมวลชนสาธารณะ

การกํากับการประกอบกิจการตามวรรคสองต้องมีมาตรการเพื่อป้องกันไม่ให้มีการควบรวม การครอบคลุมสิทธิ์ด้วยการควบรวมสิทธิ์หรือการควบรวมข้ามสิทธิ์ด้วยวิธีการอื่น ซึ่งจะมีผลเป็นการขัดขวางเสรีภาพในการรับรู้ข้อมูลข่าวสารหรือปิดกั้นการได้รับข้อมูลข่าวสารที่หลากหลายของประชาชน” (มาตรา 47 รัฐธรรมนูญฯ พ.ศ. 2550)

จากบทบัญญัติดังกล่าว จึงได้มีการประกาศพระราชบัญญัติงบกิจการกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม พ.ศ. 2553 ซึ่งเป็นที่มาของการจัดตั้งคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ (กสช.) เพื่่อทําหน้าที่กํากับดูแลกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคมในปัจจุบัน (มติชนออนไลน์, 2554)

- โทรทัศน์

พัฒนาการของสื่อโทรทัศน์เริ่มต้นในปี พ.ศ. 2475 ได้มีการเตรียมการทดลองส่งโทรทัศน์ในประเทศไทย ผู้ริเริ่มคือ พระเจ้าบรมวงศ์เธอกรมภูมิพลอดุลยเดช (กษม.) ซึ่งเริ่มต้นด้วยการทดลองส่งสัญญาณโทรทัศน์ ซึ่งมีผู้รับชมในที่ใกล้เคียงคือ ناسมุน ไม่ได้ใช้การดําเนินการใดๆ ที่เกิดเหตุการณ์การเปลี่ยนแปลงการประกอบกิจการ ซึ่งรัฐบาลใหม่ ภายใต้การนำของคณะราษฎร ให้ความสำคัญกับ
สื่อวิทยุมากกว่า จนกระทั่งเวลาล่วงผ่านไปกว่า 20 ปี เมื่อจอมพล ป. พิบูลสงครามกลับมาเป็นนายกรัฐมนตรีสมัยที่ 2 ใน พ.ศ. 2491 สื่อโทรทัศน์จึงเริ่มได้รับความสนใจมากขึ้น (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

สถานีโทรทัศน์ไทยทีวีช่อง 4 บางชุนพรหม : สถานีโทรทัศน์แห่งแรกของประเทศไทย

jompol ป. พิบูลสงครามให้ความสำคัญกับสื่อโทรทัศน์ โดยอ้างถึงเกียรติภูมิของประเทศไทย และเหตุผลที่แท้จริงเป็นเรื่องทางการเมือง กล่าวคือ สื่อโทรทัศน์ถูกนำมาใช้ในฐานะเครื่องมือเพื่อตอบโต้ฝ่ายตรงข้ามและสร้างอิทธิพลทางการเมือง (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550) อย่างไรก็ตาม ความพยายามก่อตั้งสถานีโทรทัศน์ในช่วงแรกนั้นต้องประสบกับเสียงวิพากษ์วิจารณ์จากสมาชิกสภาผู้แทนราษฎรและสื่อหนังสือพิมพ์ที่มองว่าการดำเนินการดังกล่าวยังเป็นเรื่องที่พิจารณาซึ่งรัฐบาลของจอมพล ป. พิบูลสงครามได้แก้ปัญหาโดยการจัดตั้งสถานีโทรทัศน์ขึ้นใน ป. พ.ศ. 2497 โดยทำในรูปแบบของบริษัทเจรจา ได้แก่บริษัทไทยโทรทัศน์จำกัด และให้หน่วยงานราชการเป็นผู้ถือหุ้นและใช้งบประมาณสนับสนุนอีกส่วนหนึ่ง ผู้ถือหุ้นใหญ่ของสถานีโทรทัศน์ที่จัดตั้งขึ้นในขณะนั้น คือ กรมประชาสัมพันธ์ หลังจากนั้นหนึ่งปี เมื่อวันที่ 24 มิถุนายน พ.ศ. 2498 สถานีโทรทัศน์ไทยทีวีช่อง 4 บางชุนพรหม ซึ่งอยู่ภายใต้การบริหารงานของบริษัทไทยโทรทัศน์จำกัด ก็ได้เริ่มออกอากาศครั้งแรกอย่างเป็นทางการ (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)
โทรทัศน์ในยุคเผด็จการทหาร

สถานีโทรทัศน์แห่งที่สองของประเทศไทย เกิดขึ้นในปี พ.ศ. 2500 โดย พลโท สุรศักดิ์ ธนะรัชต์ ซึ่งขณะนั้นดำรงตำแหน่งผู้บัญชาการทหารบก ได้ก่อตั้ง “สถานีวิทยุโทรทัศน์กองทัพบก” ขึ้น โดยมีวัตถุประสงค์หลักในการก่อตั้ง คือ เพื่อประโยชน์ทางการทหาร

ต่อมาในสมัยที่จอมพล สุรศักดิ์ ธนะรัชต์ ดำรงตำแหน่งผู้บัญชาการทหารบกในเวลานั้นยังควบคุมอย่างเข้มงวดและยังมีความพยายามที่จะขยายเครือข่ายสถานีโทรทัศน์แห่งประเทศไทยออกไปในหลายจังหวัด นอกจากนี้ในยุคดังกล่าว รัฐบาลยังได้สัมปทานเอกชนเข้ามาดำเนินกิจการโทรทัศน์ โดยกองทัพบกให้สัมปทานแก่บริษัทกรุงเทพโทรทัศน์และวิทยุ จำกัด ในปี พ.ศ. 2510 และได้จัดตั้งสถานีโทรทัศน์นั้นแห่งแรกซึ่ง “สถานีโทรทัศน์สีกองทัพบกช่อง 7” ต่อมาในปี พ.ศ. 2513 บริษัทไทยโทรทัศน์ จำกัด ได้ได้สัมปทานแก่บริษัทกรุงเทพโทรทัศน์และวิทยุ จำกัด ในรูปของบริษัทร่วมทุน และได้จัดตั้ง “สถานีวิทยุโทรทัศน์ไทยทีวีสี ช่อง 3” ขึ้น การให้สัมปทานโทรทัศน์แก่เอกชนเป็นอีกหนึ่งช่องทางการหารายได้ของรัฐ

ผลจากการให้สัมปทานแก่เอกชนเข้ามาดำเนินการโทรทัศน์ ทำให้มีการแข่งขันมากขึ้น โดยขณะนั้น ช่อง 4 ช่อง 7 และช่อง 3 แข่งขันกันโดยเน้นไปที่การผลิตรายการประเภทบันเทิงและกีฬาซึ่งทำรายการได้เป็นอย่างดี (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

สื่อโทรทัศน์ในช่วงเหตุการณ์ 14 ตุลาคม 2516

จากยุคเผด็จการทหาร ประเทศไทยได้แกว่าสู่ยุคประชาธิปไตยโดยผลิตภัณฑ์ หลังเหตุการณ์ 14 ตุลาคม พ.ศ. 2516 ประเทศไทยมีเสรีภาพมากขึ้น ในยุคนี้เป็นยุคที่เกิดสื่อหนังสือพิมพ์แนวการเมืองทะเลาะบัดรื่น อย่างไรก็ตามสื่อโทรทัศน์กลับไม่ได้เข้าร่วมในกระแสของประชาธิปไตยและบรรยายกายภาพเสรีภาพที่มักถูกโทรทัศน์กีบกันทุกข์ของนักสื่อสารอย่างระมัดระวัง และไม่สามารถถ่ายทอดข้อมูลทางธุรกิจได้อย่างอิสระเหมือนในยุครัฐบาลเผด็จการทหาร เหตุผลหนึ่งเกิดจากการที่โทรทัศน์ถูกควบคุมจากระเบียบวิทยุกระจายเสียงและวิทยุโทรทัศน์ พ.ศ. 2518 โดยระเบียบดังกล่าวกำหนดให้สื่อโทรทัศน์ต้องปลอดจากการเมือง และสามารถนำเสนอโฆษณาไม่เกิน 10 นาที/ชั่วโมง

สื่อโทรทัศน์กลับมาเฟื่องฟูอีกครั้งในปี พ.ศ. 2526 ซึ่งเป็นช่วงที่สถานการณ์ความขัดแย้งทางการเมืองระหว่างฝ่ายอนุรักษ์นิยมและฝ่ายก้าวหน้าเริ่มคลี่คลายลง เศรษฐกิจของประเทศดีขึ้น ในส่วนของสื่อโทรทัศน์ในยุคนี้ เริ่มได้เห็นการนำระบบธุรกิจเข้ามาบริหารจัดการกิจการโทรทัศน์
ในปี พ.ศ. 2528 กรมประชาสัมพันธ์ได้เตรียมการจัดตั้ง “สถานีวิทยุโทรทัศน์แห่งประเทศไทย ช่อง 11” โดยมีวัตถุประสงค์หลักเพื่อประชาชนส่งเสริมกิจการของรัฐและไม่มีโฆษณาธุรกิจ ซึ่งสถานีวิทยุโทรทัศน์แห่งประเทศไทย ช่อง 11 เริ่มแพร่ภาพอย่างเป็นทางการในปี พ.ศ. 2531

ต่อมาในปี พ.ศ. 2532 องค์การสื่อสารมวลชนแห่งประเทศไทย วิเคราะห์การสื่อสารพบว่าได้กู้กลับสมาชิก หรือ เคเบิลทีวี แก่บริษัทอินเตอร์เน็ตแอนด์แอดวิชั่น แอคคอมมูนิเคชั่น จำกัด ซึ่งเป็นบริษัทในเครือจีน แต่ในปี พ.ศ. 2533 ได้ให้สัมปทานแก่บริษัทสยามกระจายเสียงแอคคอมมูนิเคชั่น จำกัด หรือ ไทยสกายเคเบิล ในเครือยุโรป ซึ่งมีการนำเข้ารายการต่างประเทศจากหลายรายการ (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

จากพฤทธิกรณ์สู่กระแส “พื้นที่เสรี”

ในปี พ.ศ. 2535 ในช่วงที่เกิด “เหตุการณ์พฤษภมิตร” เป็นอีกครั้งหนึ่งในหน้าประวัติศาสตร์ของโทรทัศน์ไทย ที่ไม่สามารถจะบรรยายในเรื่องราวของประชาชนอย่างแท้จริงได้ ในช่วงเวลา นั้นความน่าเชื่อถือของสื่อโทรทัศน์ในการให้ข้อมูลข่าวสารก็ยังถูกถกเถียงมาก เนื่องจากสถานีโทรทัศน์ทั้งของรัฐและเอกชนปิดกั้นข้อมูลข้อเท็จจริงเกี่ยวกับเหตุการณ์พฤษภมิตร นำเสนอสื่อสารเรียกร้องให้มีการเปิดเสรีวิทยุและโทรทัศน์ ซึ่งรัฐบาลในสมัยนั้นได้มีนายอานันท์ปันยารชุน ดำรงตำแหน่งเป็นรัฐมนตรีในครั้งที่ได้เสนอต่อการแพร่สัญญาณ โดยการประกาศระเบียบว่าด้วยการวิทยุกระจายเสียงและวิทยุโทรทัศน์ พ.ศ. 2535 และได้ยกเลิกการตรวจเซ็นเซอร์รายการของคณะกรรมการบริการวิทยุกระจายเสียงและวิทยุโทรทัศน์ (กบว.) แต่ให้สถานีโทรทัศน์แต่ละแห่งตรวจพิจารณาเนื้อหารายการของตนเอง (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

ในช่วงเวลาที่เกิดความเปลี่ยนแปลงชั้นอย่างกับทางสื่อโทรทัศน์ ทั้งความเปลี่ยนแปลงในด้านเนื้อหาการที่มีการนำเสนอเนื้อหาทางการเมืองเพิ่มขึ้น สถานีโทรทัศน์บางแห่งเน้นการนำเสนอข่าวและสารคดี อย่างไรก็ตาม เนื่องจากเป็นปัจจุบันที่มีหลายรายการมีการส่งข่าวและสารคดีที่มากขึ้น ในระยะยาวได้เกิดการแพร่กระจายข่าวสารในทุกสถานี ทั้งในและอีกหนึ่งในโทรทัศน์ที่มีชื่อเสียง ซึ่งมีการส่งเสริมการพัฒนาทางด้านเทคโนโลยี การส่งสัญญาณโทรทัศน์ทางดิจิทัล โดยใช้ระบบไลน์เลนส์ (optical fibre) เป็นต้น ในการนำเสนอสัญญาณ และการจัดแสดงสื่อโทรทัศน์ในระบบยูเอฟช์ 1 สถานี ภายใต้การกำกับดูแลของสิ่งงานประกวดรายการโทรทัศน์ เป็นต้น (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

สืบเนื่องจากการจัดตั้งสถานีโทรทัศน์ในระบบยูเอฟช์ 1 สถานี ภายใต้การกำกับดูแลของสิ่งงานประกวดรายการโทรทัศน์ โดยกลุ่มสื่อมวลชนที่เสนอต่อคุณสมบัติขั้นต่ำ สำหรับผู้ชนะการประกวดและได้รับสิทธิ์ทางกิจการ

1. ระบบยูเอฟช์ (UHF) เป็นคลื่นความถี่สูง (Ultra-High Frequency)
โทรทัศน์แห่งใหม่ และตั้งชื่อสถานีโทรทัศน์แห่งใหม่นี้ว่า “สถานีโทรทัศน์ไอทีวี (ITV-Independent Television) (อุบลรัตน์ ศิริยุวศักดิ์ และคณะ, 2550)

จากที่วี “ทีวีเสรี” สู่ ไทยพีบีเอส “ทีวีสาธารณะ”

สถานีโทรทัศน์ไอทีวี ก่อตั้งเมื่อวันที่ 9 พฤศจิกายน 2538 มีผลิตจอมหลักคือ “ไอทีวี ทีวีเสรี” การเกิดขึ้นของไอทีวีเป็นผลมาจากเหตุการณ์การแพทย์ที่มีอยู่ในขณะนั้นทั้ง 5 ช่องได้แก่ ช่อง 3 ช่อง 5 ช่อง 7 ช่อง 9 และช่อง 11 ไม่ได้ทำหน้าที่รายงานข้อมูลข้อเท็จจริงในเหตุการณ์ดังกล่าวส่งผลให้เกิดกระแสเรียกร้อง “ทีวีเสรี” ที่จะทำหน้าที่รายงานข้อมูลข้อเท็จจริงอย่างตรงไปตรงมาให้ประชาชนได้รับทราบ รัฐบาลในขณะนั้น คือ รัฐบาลนายชวน หลีกภัย จึงได้มีมติจัดตั้งสถาปนาโทรทัศน์ในระบบยุคเอกชน 1 สถานี โดยจะให้ข้าราชการก้าวผ่านและสำนักงานปลัดสำนักนายกรัฐมนตรี และได้เปิดให้มีการประมูลเพื่อดำเนินกิจการทีวีช่องใหม่ โดยมีเงื่อนไขในการให้สัมปทาน คือ ผู้รับสัมปทานจะต้องมีผู้ถือหุ้นที่น้อยกว่า 10 ราย แต่ละรายต้องมีสัดส่วนหุ้นที่เท่ากันและต้องมีการเปลี่ยนสภาพเป็นบริษัทมหาชน เพื่อที่จะป้องกันการผูกขาดในส่วนของเนื้อหาที่นำเสนอจะต้องมีสัดส่วนเป็นรายการข่าวและสาระไม่เกินร้อยละ 70 และรายการบันเทิงไม่เกินร้อยละ 30 (ศูนย์ข้อมูลการเมืองไทย, 2558) ผู้ที่ประสบผลได้คือ กลุ่มสยามทีวีแอนด์คอมมูนิเคชั่น ในเครือธนาคารไทยพาณิชย์ โดยได้รับสัมปทานอย่างเป็นทางการเมื่อ พ.ศ. 2538

ไอทีวีเริ่มเป็นที่ยอมรับจากผู้ชมจากการนำเสนอเนื้อหาข้อมูลข่าวสารที่เข้มข้น แต่ผลการดำเนินกิจการไม่เป็นไปตามที่เป็นนัก โดยไอทีวีต้องประสบกับการขาดทุนอย่างต่อเนื่อง ซึ่งได้มีความพยายามแก้ไขปัญหาที่เกิดขึ้น ซึ่งในท้ายที่สุดได้มีการเปลี่ยนแปลงสัดส่วนผู้ถือหุ้นในการดำเนินงานสถานีโทรทัศน์ไอทีวี โดยยกเลิกข้อกำหนดในสัญญาสัมปทานแรกเริ่มที่กำหนดให้ไอทีวีต้องมีผู้ถือหุ้นไม่เกินกว่า 10 ราย และแต่ละรายต้องมีสัดส่วนหุ้นเท่ากันแต่ไม่เกิน 10% เพื่อต้องการให้ไอทีวีเข้าสู่ตลาดหลักทรัพย์ ผลจากการแก้ข้อกำหนดดังกล่าวทำให้มีผู้ถือหุ้นรายใหม่จากบริษัทในเครือชินวัตรเข้ามาเกี่ยวข้องกับการดำเนินงานของไอทีวี ซึ่งการเข้ามาบริหารงานของบริษัทในเครือชินวัตรส่งผลดีในแง่การบริหารธุรกิจ แต่ก็ได้รับเสียงวิพากษ์วิจารณ์ที่มีการนำเสนอเนื้อหาข่าวที่ลดความเข้มข้นลง จากการที่กลุ่มทุนจากบริษัทในเครือชินวัตรแทรกแซงสิทธิ์ของไอทีวีหลักเหตุผลในการตัดสินใจของไอทีวี ด้วยอย่างเช่น

- การสั่งเปลี่ยนตำแหน่งนักข่าวที่ดังค่าถาม พ.ท.ท.ทักษิณ ชินวัตร หรือการขอหุ้นบริษัทในเครือชินวัตร
- การสั่งไม่ให้ออกอากาศข่าวเฉพาะแนวกลั่นหลัง
- การสั่งให้กองบรรณาธิการข่าวทำข่าวที่เกี่ยวข้อง ผู้รับสัมปทาน อยู่ในเครือชินวัตร ยกเว้นบัตรสิทธิ์ปัญหาการบุกรุก
- การสั่งห้ามบริหารงานของบริษัทในเครือชินวัตรส่งเสริมให้สำนักงานการบริหารธุรกิจ เลือกให้รับบทบาททางธุรกิจและการนำเสนอเนื้อหาข่าวที่ลดความเข้มข้นลง จากรายการที่กลุ่มทุนจากบริษัทในเครือชินวัตรแทรกแซงสิทธิ์ของไอทีวีหลักเหตุผล
จากการที่ผู้บริหารแทรกแซงการดำเนินงานของฝ่ายข่าวไอทีวีอย่างหนัก นำมาสู่การออกแถลงการณ์จากฝ่ายข่าวไอทีวี นำโดยนายเทพชัย ห้อง ผู้อำนวยการฝ่ายข่าว ที่มีเนื้อหาเรียกร้องให้พ.ท.ท.ทักษิณ, นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่าวไอทีวียุติการขัดแย้งกับสถานีทางการข่าว โดยมีการประชุมครั้งแรกเมื่อวันที่ 6 กุมภาพันธ์ พ.ศ. 2544 ภายหลังจากการประชุมหัวหน้าฝ่ายทีวีที่มีนายเทพชัยห้อง นายบุญคลี ปลั่งศิริ ผู้บริหารชินคอร์ป และ นายสรรค์ชัย เตียวประเสริฐกุล กรรมการผู้จัดการไอทีวี ยุติการครบกำหนดสัญญาล่าช้าเกือบจากนั้น กลุ่มนักข่า...
อินเทอร์เน็ต

พิรงรอง รามสูต (2556) ได้ประมาณผลพัฒนาการสื่ออินเทอร์เน็ตของประเทศไทยไว้ โดยจากข้อมูลพบว่า ในปี พ.ศ. 2530 เป็นช่วงที่อินเทอร์เน็ตเริ่มเข้ามาสู่ประเทศไทย โดยความร่วมมือระหว่างสถาบันเทคโนโลยีแห่งเอเชีย หรือ AIT กับภาควิชาวิทยาศาสตร์คอมพิวเตอร์ มหาวิทยาลัยมอเตอร์ปัน ประเทศออสเตรเลีย ในยุคแรกเริ่มของอินเทอร์เน็ตในประเทศไทยนั้น การใช้งานยังคงจำกัดในสถาบันการศึกษาขนาดใหญ่และสถาบันบริษัทต่างๆในประเทศยังไม่ได้อย่างสุจริตในวงกว้างเหมือนปัจจุบัน เพราะเทคโนโลยีอินเทอร์เน็ตในสมัยแรกๆยังไม่ได้ถูกพัฒนาอย่างเต็มที่ และความสามารถของประชาชนในการเข้าถึงอินเทอร์เน็ตยังอยู่ในระดับต่ำ

ต่อมาในช่วงต้นทศวรรษที่ ปี พ.ศ. 2538 เป็นต้นมา อินเทอร์เน็ตยังได้รับการเปิดบานไปในชีวิตพื้นถิ่น หลังจากการศึกษาความเป็นไปได้ในการตั้งอินเทอร์เน็ตในเชิงพาณิชย์ในปี พ.ศ. 2537 เป็นระยะเวลานาน 6 เดือน ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ หรือ ศนค์ ได้เสนอต่อการสื่อสารแห่งประเทศไทย (กสท.) ไปยังคณะกรรมการขับเคลื่อนการเทคโนโลยีสารสนเทศและการสื่อสารระหว่างประเทศในเวลานั้นให้มีการให้บริการอินเทอร์เน็ตเชิงพาณิชย์ในประเทศไทย โดยมีหน่วยงานรัฐ 3 หน่วยงานร่วมทุกกันให้แก่การสื่อสารแห่งประเทศไทย (กสท.) องค์การโทรคมนาคมแห่งประเทศไทย (ทศท.) และสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) ซึ่งต่อมาในเดือนมีนาคม พ.ศ. 2538 มีมติคณะรัฐมนตรีให้ ก่อตั้งศูนย์บริการอินเทอร์เน็ตประเทศไทย (Internet Thailand Service Center หรือ ITSC) ขึ้น ซึ่งถือว่าเป็นผู้ให้บริการอินเทอร์เน็ตเชิงพาณิชย์รายแรกของประเทศไทย

หลังจากนั้นจึงได้เกิดกิจกรรมให้บริการอินเทอร์เน็ตเชิงพาณิชย์รายอื่นๆตามมา ส่งผลให้เกิดการแข่งขันกันระหว่างผู้ให้บริการอินเทอร์เน็ต นับว่าเป็นการแข่งขันเพื่อส่งเสริมให้เกิดผู้ใช้อินเทอร์เน็ตอย่างกว้างขวางขึ้น นอกจากนี้ในช่วงเวลาต่อมา เทคโนโลยีอินเทอร์เน็ตได้รับการพัฒนามากขึ้น ซึ่งการพัฒนาระดับเทคโนโลยีที่สำคัญคือ การมีไฮเปอร์เท็กซ์ (Hypertext) หรือ บริเวณเว็บไซต์ (WWW) ทำให้ผู้คนสามารถเข้าถึงอินเทอร์เน็ตได้ในยุคที่เนื้อหาเป็นเพียงตัวอักษรเท่านั้น ขณะที่การมีไฮเปอร์เท็กซ์ (Hypertext) จะทำให้สามารถนำเสนอเนื้อหาในรูปแบบของสื่อประสมได้ รวมถึงการเชื่อมโยง (link) ข้อมูลไปยังเว็บไซต์อื่นๆที่ทำได้ไม่ยาก

ในยุคของไฮเปอร์เท็กซ์นั้น ได้เกิดธุรกิจการให้บริการเนื้อหาอินเทอร์เน็ตขึ้นเป็นครั้งแรก ในปี พ.ศ. 2538 หนังสือพิมพ์บางกอกโพสต์ร่วมกับกรมประชาสัมพันธ์ไทย ขึ้นเป็นเว็บไซต์ของหนังสือพิมพ์ในปี พ.ศ. 2538 หนังสือพิมพ์บางกอกโพสต์ได้เป็นบริการหนังสือพิมพ์ออนไลน์ขึ้น

2 ไฮเปอร์เท็กซ์ (Hypertext) คือ ข้อความหรือกลุ่มของข้อความที่ถูกเชื่อมโยงเข้าด้วยกันโดยมีการนำเสนอแบบปฏิสัมพันธ์ (Interaction) ของการนำข้อมูลที่ใช้มาเป็นจุดเชื่อมโยง ซึ่งจะมีลักษณะแตกต่างจากความเป็น ขceiving ข้อมูลที่ใช้ การนำเสนอแบบปฏิสัมพันธ์ (Interaction) หรือการตัดสินใจ หรือการเรียนรู้ เป็นต้น
ในช่วงเวลาดังกล่าว โลกออนไลน์ได้มีโอกาสต้อนรับเว็บไซต์รูปแบบใหม่ๆ ทั้งที่ดำเนินการในเชิงพาณิชย์และดำเนินการโดยภาคประชาชน เช่น เว็บไซต์พันทิป เว็บสนุกดอทคอม เว็บกระปุกดอทคอม เว็บไซต์มหาวิทยาลัยเที่ยงคืน เว็บไซด์ Thaingo.net เป็นต้น

ต่อมาหลังจากการประกาศใช้รัฐธรรมนูญแห่งราชอาณาจักรไทย พ.ศ. 2540 ได้เกิดความเปลี่ยนแปลง ครั้งสำคัญกับวงการสื่อวิทยุและโทรทัศน์ โดยเริ่มวิเคราะห์ความเปลี่ยนแปลงในการส่งสัญญาณทางวิทยุและโทรทัศน์ และได้มีการจัดตั้งองค์กรของรัฐที่เป็นอิสระทำหน้าที่ในการจัดสรรคลื่นความถี่ เช่น จากรัฐบัญญัติที่เกี่ยวกับการรัฐธรรมนูญ ได้นำมาสู่การออกพระรัฐบัญญัติการจัดสรรคลื่นความถี่ และทำกับการจัดสรรกระจายเสียง วิทยุโทรทัศน์ และกิจการ โทรคมนาคม พ.ศ. 2543 ซึ่งเนื้อหาในส่วนที่เกี่ยวกับสื่ออินเทอร์เน็ตเมื่อคิด การกำหนดให้มีการจัดตั้ง "คณะกรรมการการโทรคมนาคมแห่งชาติ (กทช.)" ซึ่งเป็นองค์กรตัวแทนที่เป็นของรัฐ เมื่อทำหน้าที่จัดสรรคลื่นความถี่ และทำกับการจัดสรรคลื่นความถี่ ซึ่งรวมถึงการออกกฎหมายและข้อบังคับในการใช้คลื่นและ ทำกับผู้ให้บริการชุมสาย/เกตเวย์ทั้งในประเทศและระหว่างประเทศ รวมถึงผู้ให้บริการอินเทอร์เน็ตเชิงพาณิชย์ (ISPs) ด้วย

นอกจากนี้ อีกหนึ่งผลพวงจากรัฐธรรมนูญฯ พ.ศ. 2540 คือการออกพระรัฐบัญญัติการประกอบกิจการโทรคมนาคม พ.ศ. 2544 โดยได้กำหนดให้ ทศท. และ กสท. เตรียมตั้งเป็นผู้รับผิดชอบรัฐวิสาหกิจเป็น บริษัทเอกชน โดย ทศท. ได้ประกาศเป็น บริษัท ทศท. คอร์ปอเรชั่น จำกัด (มหาชน) และ กสท. ได้ประกาศเป็น บริษัท กสท. จำกัด (มหาชน) อย่างไรก็ตามท้องสื่อสารองค์กรอิสระมีฐานะเป็นรัฐวิสาหกิจ มีกระทรวงการคลังถือหุ้น 100 เปอร์เซ็นต์ และสังกัดกระทรวงใหม่ที่รัฐบาลเพิ่งตั้งขึ้นในยุค พ.ศ. ทักษิณ ชินวัตร กระทรวงดังกล่าวคือ กระทรวงเทคโนโลยีสารสนเทศและการสื่อสาร

ในช่วงเวลาดังกล่าว เป็นช่วงที่ธุรกิจอินเทอร์เน็ตในประเทศไทยขยายตัว และมีการแข่งขันทางการตลาดสูง ซึ่งผลจากการแข่งขันที่เข้มข้นในขณะนั้นที่ทำให้องค์กรธุรกิจเกี่ยวกับอินเทอร์เน็ตต่างใช้กลยุทธ์ และเทคนิควิธีการต่างๆเพื่อครอบครองความเป็นเจ้าตลาด

ในปี พ.ศ. 2545 พ.ศ. ทักษิณ ชินวัตร นายกรัฐมนตรีในขณะนั้น ได้เริ่มที่โครงการคอมพิวเตอร์ เอื้ออาทรและโครงการอินเทอร์เน็ตความเร็วสูงรัฐบาล โดยผู้รับผิดชอบคือกระทรวงใหม่ที่รัฐบาลเพิ่งตั้งขึ้น นั่นคือ กระทรวงเทคโนโลยีสารสนเทศและการสื่อสาร หรือกระทรวงไอซีที ส่งผลให้ราคากลั่นหลักโดยรวม และราคาอินเทอร์เน็ตความเร็วสูงในประเทศลดลง ซึ่งช่วยผลักดันให้เกิดการขยายตัวของผู้ใช้อินเทอร์เน็ตหรือตั้งขึ้นในปี พ.ศ. 2546 เป็นต้นมา

นับตั้งแต่ปี พ.ศ. 2551 เป็นต้นมา การเริ่มต้นต้นของการอินเทอร์เน็ตทั้งในมิติของเทคโนโลยี ความหลากหลายของเนื้อหา ตลอดจนศักยภาพของผู้ใช้บริการอินเทอร์เน็ตมีการพัฒนาอย่างต่อเนื่อง โดยในช่วงเวลา
ดังกล่าว เว็บไซต์ต่างๆ ได้ถูกพัฒนาขึ้นสู่ยุคเว็บ 2.0 ที่ผู้ใช้อินเทนเน็ตมีความสามารถร่วมสร้างเนื้อหา ตลอดจนสามารถปฏิสัมพันธ์ระหว่างผู้ใช้ผ่านเนื้อหาหลากหลายรูปแบบ ไม่จำเป็นต้องเป็นภาพ เสียง หรือภาพเคลื่อนไหว ซึ่งการพัฒนาสู่ยุคเว็บ 2.0 มีส่วนสนับสนุนการขยายตัวของสื่อสังคมออนไลน์ต่างๆ เช่น ไฮไฟว์ (Hi5) มาสคเจป (MySpace), เพชรบุรี (Facebook), ทวิตเตอร์ (Twitter) เป็นต้น นอกจากนี้เทคโนโลยีโทรศัพท์แบบสมาร์ทโฟน และแท็บเล็ตต่างๆ ได้ส่งเสริมการใช้สื่อสังคมออนไลน์ให้สามารถทำได้อย่างสะดวกและรวดเร็ว ลดข้อจำกัดในเรื่องเวลาและสถานที่ในการใช้สื่อสังคมออนไลน์

การเกิดขึ้นของสังคมออนไลน์ได้เปลี่ยนแปลงมุมมองที่นักสื่อสาร (Media Landscape) อย่างมาก กล่าวคือ สื่อสังคมออนไลน์ทำให้ผู้ใช้สามารถเป็นทั้งผู้ผลิตเนื้อหาและผู้บริโภคนำเนื่องในเวลาเดียวกัน ทำให้เกิดการเปลี่ยนแปลงการNhap ระหว่างกัน รวมถึงการแลกเปลี่ยนข้อมูลระหว่างผู้ใช้เว็บไซต์ต่างกัน ตลอดจนการรวมคนให้กลุ่มกัน ทำให้กำไรมีการกระจายข้อมูลอย่างมาก ผู้ใช้และกลุ่มผู้ใช้เว็บไซต์ต่างกัน เนื่องจากเนื้อหาสังคมออนไลน์จะส่งผลกระทบต่อการควบคุมของผู้ใช้เว็บไซต์มากขึ้น เนื่องจากผู้ร่วมนำเนื้อหาหลักในสื่อสังคมออนไลน์เป็นผู้ใช้ไม่ใช่เจ้าของเว็บไซต์

2.2 แนวโน้มการพร้อมร่วมเข้าหากันของสื่อ (media convergence)

วิวัฒนาการทางเทคโนโลยีที่ได้กล่าวมาในเนื้อหาส่วนที่ 1 ทั้งพัฒนาการด้านการเข้าถึงอินเทนเน็ตและการปรับเปลี่ยนจากระบบตนเองสู่ระบบดิจิทัลที่มี สร้างผลกระทบอย่างมากต่อสังคมในหลายๆ ด้าน รวมถึงในการสื่อสารมวลชน ในเทคโนโลยีระบบอินเทนเน็ต เนื่องจากในบริบทที่ผู้ใช้สื่อสังคมออนไลน์มีแนวคิดกันไปยังมวลชนผู้บริโภคสื่อ (mass audience) แท้ในระบบดิจิทัลที่มี เนื้อหาที่แทบที่จะไม่สูญค่าต่างกัน ปริมาณสื่อที่ถูกสร้างได้ถูกควบคุมอยู่ในกลุ่มผู้บริโภคสื่อ (fragmented audience) ในช่องทางบอร์ด หรืออินเทนเน็ต ซึ่งการจัดสื่อสารภาพ หรือการจัดสื่อสารมวลชนสังคมออนไลน์เกิดขึ้นทั้งในทุกๆ ด้านการตรวจสอบเนื้อหาสื่อที่ทำงานและกิจการกระจายสื่อ หรือโทรทัศน์สื่อใหม่ OECD (2013) เสนอว่าความเปลี่ยนแปลงทางเทคโนโลยีนี้มีผลเป็น

- การพัฒนาโครงข่ายระบบ宽带ทั้งแบบประจำที่ (fixed broadband) และแบบเคลื่อนที่ (mobile broadband) ที่สามารถส่งผ่านข้อมูลภาพและเสียงได้หลากหลาย
- อินเทนเน็ตทำให้การสื่อสารยุคบุคคลผ่านบริการโทรคมนาคม (telecommunication) แบบสื่อสารแบบผ่านการเผยแพร่ทางกระจายเสียง (broadcasting) ไม่สามารถแยกออกได้ถูกจัดอยู่ในที่เดียวกัน
- การจัดเนื้อหาของสาระเป็นข้อมูล เสียง หรือภาพ กลายเป็นเรื่องสำคัญ
- อุปกรณ์สำหรับอินเทนเน็ต สื่อที่เป็นข้อมูล หรือสื่อที่เป็นเสียง กลายเป็นเรื่องสำคัญ
แนวโน้มการหลอมรวมเข้าหากันของสื่อ (media convergence) เกิดขึ้นจากความเปลี่ยนแปลงทางเทคโนโลยีเหล่านี้ และทำให้ผู้บริโภคนั้นเปลี่ยนแปลงไปอย่างมีนัยสำคัญ

ความแพร่หลายของอุปกรณ์อิเล็กทรอนิกส์ของผู้บริโภค (consumer electronics)

อุปกรณ์อิเล็กทรอนิกส์ของผู้บริโภค (consumer electronics) คอมพิวเตอร์เป็นอุปกรณ์สำคัญที่ใช้สำหรับเชื่อมต่ออินเทอร์เน็ต จำนวนผู้ใช้คอมพิวเตอร์ ทั้งคอมพิวเตอร์ส่วนบุคคลแบบตั้งโต๊ะ และแบบโน้ตบุ๊คที่พบว่าได้มีจำนวนเพิ่มสูงขึ้นมาก ข้อมูลจากสำนักงานสถิติแห่งชาติล่าสุดในปี 2557 พบว่า จำนวนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบตั้งโต๊ะสูงกว่า 20 ล้านคน และจำนวนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบโน้ตบุ๊คครุ่นกว่า 10 ล้านคน ประเด็นที่ควรสังเกตในที่นี้คือกันบนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบโน้ตบุคั้นเพิ่มสูงขึ้นกว่า 50 เท่าในช่วง 10 ปีที่ผ่านมา

![Image of chart showing the number of computer users](image)

ที่มา: สำนักงานสถิติแห่งชาติ, การสำรวจการมีการใช้เทคโนโลยีสารสนเทศและการสื่อสารในครัวเรือน

นอกจากนี้ ในช่วงไม่กี่ปีที่ผ่านมา ผู้ใช้โทรศัพท์มือถือแบบสมาร์ทโฟน (smart phone) และแท็บเล็ต (tablet) นั้นเป็นที่นิยมเพิ่มมากขึ้นมาก ข้อมูลจากสำนักงานสถิติแห่งชาติล่าสุดในปี 2557 พบว่า จำนวนผู้ใช้โทรศัพท์มือถือแบบสมาร์ทโฟนเพิ่มขึ้นจนสูงกว่าจำนวนผู้ใช้คอมพิวเตอร์ส่วนบุคคลแบบโน้ตบุ๊ค โดยเพิ่มขึ้นกว่า 3 เท่าในระยะเวลา 3 ปี ขณะที่จำนวนผู้ใช้แท็บเล็ตเพิ่มขึ้นอย่างรวดเร็วเช่นเดียวกัน
ภาพที่ 2.2 จำนวนผู้ใช้คอมพิวเตอร์ทั้งบุคคลและไม่ติดตั้ง
โทรศัพท์มือถือสมาร์ทโฟน และแท็บเล็ต

ที่มา: สำนักงานสถิติแห่งชาติ, การสำรวจการมีการใช้เทคโนโลยีสารสนเทศและการสื่อสารในครัวเรือน

ด้วยคุณสมบัติของอุปกรณ์อิเล็กทรอนิกส์ของผู้บริโภคในสมัยใหม่ที่สามารถเชื่อมต่ออินเทอร์เน็ตได้ ทำให้การเข้าถึงอินเทอร์เน็ตเพิ่มสูงขึ้นเป็นอย่างมาก ข้อมูลจากสำนักงานสถิติแห่งชาติล่าสุดในปี 2557 พบว่าจำนวนผู้เข้าถึงอินเทอร์เน็ตเพิ่มสูงถึงกว่า 20 ล้านคน หรือเพิ่มขึ้นกว่า 3 เท่าในช่วง 10 ปีที่ผ่านมา แม้ว่าการเพิ่มขึ้นของอุปกรณ์อิเล็กทรอนิกส์รวมทั้งประเภทจะเพิ่มขึ้นไม่ถึงเท่าตัวในช่วงเวลาเดียวกัน

ภาพที่ 2.3 การเข้าถึงอินเทอร์เน็ต

ที่มา: สำนักงานสถิติแห่งชาติ, การสำรวจการมีการใช้เทคโนโลยีสารสนเทศและการสื่อสารในครัวเรือน
การเข้าถึงอินเทอร์เน็ตที่เพิ่มมากขึ้นมาก เป็นทั้งโอกาสและแรงบีบให้ผู้ผลิตสื่อดั้งเดิม (traditional media) ต้องปรับตัวโดยการเพิ่มช่องทางในการเข้าถึง โดยเฉพาะการเปิดเว็บไซต์เพื่อเผยแพร่เนื้อหา การใช้โซเชียลมีเดีย ตลอดจนโปรแกรมประยุกต์สำหรับโทรศัพท์มือถือและแท็บเล็ต.
ตารางที่ 2.1 การปรับตัวเข้าหาสื่อใหม่ของผู้ประกอบกิจการสถานี

หมายเลขช่อง	โลโก้	ชื่อช่อง	หน่วยงาน	ช่องทางที่เข้าชมรายการ
ช่อง 10	![โลโก้ешพีพี](image1)	สถานีวิทยุโทรทัศน์รัฐสภา	สานักงานเลขาธิการสภาผู้แทนราษฎร	http://www.tvparliament.net/
ช่อง 13	![โลโก้3Family](image2)	3 Family	บริษัท บีเอชเอ-มัลติมีเดีย จำกัด	http://www.krobkrakao.com/
ช่อง 14	![โลโก้MCOT Kids & Family](image3)	MCOT Kids & Family	บริษัท อมชม จำกัด (มหาชน)	http://mcot-web.mcot.net/mcotfamily/
ช่อง 15	![โลโก้LOCA](image4)	สถานีโทรทัศน์ LOCA	บริษัท ไทยทีวี จำกัด	http://www.tvpoolonline.com/
ช่อง 16	![โลโก้TNN24](image5)	TNN24	บริษัท ไทย นิวส์ เน็ตเวิร์ค (ทีเอ็นเอ็น) จำกัด	http://www.tnnthailand.com/
<table>
<thead>
<tr>
<th>หมายเลข ช่อง</th>
<th>โลโก้</th>
<th>ชื่อช่อง</th>
<th>หน่วยงาน</th>
<th>ช่องทางเว็บไซต์สำหรับรับชมรายการ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ช่อง 17</td>
<td></td>
<td>ไทยทีวี</td>
<td>บริษัท ไทยทีวี จำกัด</td>
<td>http://www.tvpoolonline.com/</td>
</tr>
<tr>
<td>ช่อง 18</td>
<td></td>
<td>นิวทีวี (NEW TV)</td>
<td>บริษัท ดีเอ็น บรอดคาสท์ จำกัด</td>
<td>http://www.newtv.co.th/</td>
</tr>
<tr>
<td>ช่อง 19</td>
<td></td>
<td>สถานีโทรทัศน์ สปริงนิวส์</td>
<td>บริษัท สปริงนิวส์ เทเลวิชั่น จำกัด</td>
<td>http://www.springnews.co.th/</td>
</tr>
<tr>
<td>ช่อง 20</td>
<td></td>
<td>Bright TV</td>
<td>บริษัท ไบรท์ ทีวี จำกัด</td>
<td>http://www.brighttv.co.th/</td>
</tr>
<tr>
<td>ช่อง 21</td>
<td></td>
<td>VOICE TV</td>
<td>บริษัท วอยซ์ ทีวี จำกัด</td>
<td>http://www.voicetv.co.th/</td>
</tr>
<tr>
<td>ช่อง 22</td>
<td></td>
<td>Nation TV</td>
<td>บริษัท เอ็นบีซี เน็ทเวิร์กส์ จำกัด</td>
<td>http://www.nationtv.tv/</td>
</tr>
</tbody>
</table>

บริการทางธุรกิจ หมวดหมู่ทั่วไปแบบความคมชัดปกติ
<table>
<thead>
<tr>
<th>หมายเลขช่อง</th>
<th>โลโก้</th>
<th>ชื่อช่อง</th>
<th>หน่วยงาน</th>
<th>ช่องทางเว็บไซต์สำหรับรับชมรายการ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ช่อง 23</td>
<td></td>
<td>เวิร์คพอยท์ ทีวี</td>
<td>บริษัท ไทย บロドคาสติ้ง จำกัด</td>
<td>http://workpointtv.com/</td>
</tr>
<tr>
<td>ช่อง 24</td>
<td></td>
<td>True 4 U (ทรูโฟร์ยู)</td>
<td>บริษัท ทรูโฟร์ยู สเตชั่น จำกัด</td>
<td>http://true4u.truelife.com/</td>
</tr>
<tr>
<td>ช่อง 25</td>
<td></td>
<td>GMM Channel</td>
<td>บริษัท จีเอ็มเอ็ม แชนแนล จำกัด</td>
<td>http://gmm25.com/</td>
</tr>
<tr>
<td>ช่อง 26</td>
<td></td>
<td>NOW</td>
<td>บริษัท แบงคอก บิสเส็นส บロドแคสติ้ง จำกัด</td>
<td>http://www.now26.tv/</td>
</tr>
<tr>
<td>ช่อง 27</td>
<td></td>
<td>8</td>
<td>บริษัท อาร์.เอส.เทเลวิชั่น จำกัด</td>
<td>http://www.thaich8.com/</td>
</tr>
<tr>
<td>ช่อง 28</td>
<td></td>
<td>3 SD</td>
<td>บริษัท บีชิ-แมตติ้มเดย์ จำกัด</td>
<td>http://www.krobkruakao.com/</td>
</tr>
<tr>
<td>หมายเลขช่อง</td>
<td>โลโก้</td>
<td>ชื่อช่อง</td>
<td>หน่วยงาน</td>
<td>ช่องทางเว็บไซต์สำหรับรับชมรายการ</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ช่อง 29</td>
<td></td>
<td>Mono ทะนี่ทันเนอร์ (Mono 29)</td>
<td>บริษัท โมโน บรรดอคส์ จำกัด</td>
<td>http://mono29.mthai.com/</td>
</tr>
<tr>
<td>ช่อง 30</td>
<td></td>
<td>MCOT HD</td>
<td>บริษัท อสมท จำกัด (มหาชน)</td>
<td>http://www.mcot.net/tv/mod9</td>
</tr>
<tr>
<td>ช่อง 31</td>
<td></td>
<td>One</td>
<td>บริษัท จีเอ็มเอ็ม ทีวี จำกัด</td>
<td>http://www.onehd.net/</td>
</tr>
<tr>
<td>ช่อง 32</td>
<td></td>
<td>ไทยรัฐทีวี</td>
<td>บริษัท ทริปเปิล วี บรรดอคส์ จำกัด</td>
<td>http://www.thairath.tv/</td>
</tr>
<tr>
<td>ช่อง 33</td>
<td></td>
<td>3 HD</td>
<td>บริษัท บีเอช-มีเดีย จำกัด</td>
<td>http://www.thaitv3.com/ http://www.krobkruakao.com/</td>
</tr>
<tr>
<td>ช่อง 34</td>
<td></td>
<td>Amarin TV HD</td>
<td>บริษัท อาร์มันเทเลวิชั่น จำกัด</td>
<td>http://www.amarintv.com/</td>
</tr>
</tbody>
</table>

บริการทางธุรกิจ หมวดหมู่ทั่วไปแบบความคมชัดสูง
<table>
<thead>
<tr>
<th>หมายเลขช่อง</th>
<th>โลโก้</th>
<th>ชื่อช่อง</th>
<th>หน่วยงาน</th>
<th>ช่องทางเว็บไซต์สำหรับรับชมรายการ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ช่อง 35</td>
<td></td>
<td>7 HD</td>
<td>บริษัท กรุงเทพโทรทัศน์และวิทยุ จำกัด</td>
<td>http://www.ch7.com/</td>
</tr>
<tr>
<td>ช่อง 36</td>
<td></td>
<td>พีพีทีวี (PPTV)</td>
<td>บริษัท บางกอก มีเดีย แอนด์ บรอดкаสติ้ง จำกัด</td>
<td>http://www.pptvthailand.com/</td>
</tr>
</tbody>
</table>
ตารางที่ 2.2 การปรับตัวเข้าหาสื่อใหม่ของผู้ประกอบกิจการสถานีวิทยุ

<table>
<thead>
<tr>
<th>คลื่นความถี่ของสถานีวิทยุ</th>
<th>ช่องทางการเข้าถึงผ่านเว็บไซต์</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.5</td>
<td>http://www.radioparliament.net/</td>
</tr>
<tr>
<td>88</td>
<td>http://nbt.prd.go.th/liveradio/live-fm88.html</td>
</tr>
<tr>
<td>88.5</td>
<td>http://www.sabaidee-radio.com/onair.html</td>
</tr>
<tr>
<td>89</td>
<td>http://www.chill89.fm/</td>
</tr>
<tr>
<td>89.5</td>
<td>http://www.895sweet.com/</td>
</tr>
<tr>
<td>90</td>
<td>http://www.90rakthai.com/</td>
</tr>
<tr>
<td>90.5</td>
<td>http://radio.nationchannel.com/</td>
</tr>
<tr>
<td>91</td>
<td>http://www.fm91bkk.com/</td>
</tr>
<tr>
<td>91.5</td>
<td>http://www.freszf.com/</td>
</tr>
<tr>
<td>92</td>
<td>http://www.moeradiotai.net/</td>
</tr>
<tr>
<td>92.5</td>
<td>http://nbt.prd.go.th/liveradio/live-fm925.html</td>
</tr>
<tr>
<td>93</td>
<td>http://www.coolism.net/</td>
</tr>
<tr>
<td>93.5</td>
<td>http://www.935hd1.com/</td>
</tr>
<tr>
<td>94</td>
<td>http://www.efm.fm/</td>
</tr>
<tr>
<td>94.5</td>
<td>http://www.luktungeasy.com/</td>
</tr>
<tr>
<td>95</td>
<td>http://mcot-web.mcot.net/radio/95</td>
</tr>
<tr>
<td>95.5</td>
<td>http://listen.becteroradio.com/hitz.html</td>
</tr>
<tr>
<td>96</td>
<td>http://www.smmsport.com/radio/</td>
</tr>
<tr>
<td>96.5</td>
<td>http://mcot-web.mcot.net/radio/965</td>
</tr>
<tr>
<td>97.5</td>
<td>http://www.seedmcot.com/</td>
</tr>
<tr>
<td>98</td>
<td>http://listen.becteroradio.com/virginstar.html</td>
</tr>
<tr>
<td>98.5</td>
<td>http://www.iradiofm.net/click985</td>
</tr>
<tr>
<td>99</td>
<td>http://mcot-web.mcot.net/radio/99</td>
</tr>
<tr>
<td>99.5</td>
<td>http://www.trs995.com/</td>
</tr>
<tr>
<td>100</td>
<td>http://www.js100.com/live/</td>
</tr>
<tr>
<td>100.5</td>
<td>http://mcot-web.mcot.net/radio/1005</td>
</tr>
<tr>
<td>101</td>
<td>http://www.vr1media.com/</td>
</tr>
<tr>
<td>101.5</td>
<td>http://www.curadio.chula.ac.th/</td>
</tr>
<tr>
<td>102</td>
<td>http://radio.nationchannel.com/</td>
</tr>
<tr>
<td>102.5</td>
<td>http://www.iradiofm.net/get1025</td>
</tr>
<tr>
<td>103</td>
<td>http://www.103likefm.com/</td>
</tr>
<tr>
<td>103.5</td>
<td>http://www.iradiofm.net/fmone1035</td>
</tr>
<tr>
<td>104</td>
<td>http://www.iradiofm.net/loveradio1045</td>
</tr>
<tr>
<td>คลื่นความถี่ของสถานีวิทยุ</td>
<td>ช่องทางการเข้าถึงผ่านเว็บไซต์</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>105</td>
<td>http://www.homeradio1.com/</td>
</tr>
<tr>
<td>105.5</td>
<td>http://listen.bectororadio.com/eazy.html</td>
</tr>
<tr>
<td>106.5</td>
<td>http://www.greenwave.fm/</td>
</tr>
<tr>
<td>107</td>
<td>http://www.met107.fm</td>
</tr>
</tbody>
</table>
ตารางที่ 2.3 การปรับตัวเข้าหาสื่อใหม่ของผู้ผลิตหนังสือพิมพ์

<table>
<thead>
<tr>
<th>หนังสือพิมพ์</th>
<th>ช่องทางเว็บไซต์</th>
<th>ช่องทางโซเชียลมีเดีย</th>
<th>เพจบุค</th>
<th>ผู้ติดตาม</th>
<th>ทวิตเตอร์</th>
<th>ผู้ติดตาม</th>
</tr>
</thead>
<tbody>
<tr>
<td>หนังสือพิมพ์รายวันภาษาไทย</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ข่าวสด</td>
<td>http://www.khaosod.co.th/</td>
<td>https://www.facebook.com/khaosod</td>
<td>5.8 ล้าน</td>
<td>https://twitter.com/KhaosodOnline</td>
<td>5.1 หมื่น</td>
<td></td>
</tr>
<tr>
<td>มติชน</td>
<td>http://www.matichon.co.th/</td>
<td>https://www.facebook.com/MatichonOnline</td>
<td>3.7 แสน</td>
<td>https://twitter.com/MatichonOnline</td>
<td>3.2 แสน</td>
<td></td>
</tr>
<tr>
<td>หนังสือพิมพ์ธุรกิจ รายวัน</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>หนังสือพิมพ์ธุรกิจ ราย 3 วัน</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 การเปลี่ยนแปลงโครงสร้างชีวิตอาบ้าน

มาตรา 27 แห่งรัฐธรรมนูญแห่งราชอาณาจักรไทย (ฉบับชั่วคราว) พุทธศักราช 2558 บัญญัติให้มีสภาปฏิรูปแห่งชาติเพื่อทำหน้าที่ศึกษาและเสนอแนะเพื่อให้เกิดการปฏิรูปในด้านต่างๆ รวมถึงด้านสื่อมวลชน ปัจจุบัน (มีนาคม 2558) ประเด็นการปฏิรูปสื่อในสภาปฏิรูปแห่งชาตินั้นอยู่ภายใต้การดำเนินการโดยคณะกรรมาธิการปฏิรูปการสื่อสารมวลชนและเทคโนโลยีสารสนเทศ ความคืบหน้าสำคัญในการดำเนินการของคณะกรรมาธิการชุดนี้ คือ ความคิดเห็นและข้อเสนอแนะในการกำหนดรัฐธรรมนูญฉบับใหม่ในประเด็นย่อย 10 ประเด็น เช่น ประเด็นสิทธิเสรีภาพของประชาชนและสื่อมวลชนในการแสดงความคิดเห็น และประเด็นความเป็นอิสระของสื่อมวลชน เป็นต้น

อย่างไรก็ตาม ความพยายามในการปฏิรูปสื่อตั้งแต่ล่าสุดมีเพื่อเพิ่มเกิดขึ้น หากแต่กระบวนการการปฏิรูปสื่อในที่นี้มีพัฒนาการมาโดยตลอด การปฏิรูปสื่อที่เกิดขึ้นมาหลังเหตุการณ์ความขัดแย้งทางการเมืองในเดือนพฤษภาคม 2535 เมื่อภาคส่วนต่างๆ ของสังคมมักที่การปฏิรูปสื่อให้เป็นความจำเป็นและน่าเป็นไปตามการเปลี่ยนแปลงที่สำคัญทุกเหตุการณ์ รวมถึงการบัญญัติเนื้อหาทางการปฏิรูปสื่อในรัฐธรรมนูญเป็นครั้งแรก บทบัญญัติที่สำคัญในรัฐธรรมนูญฉบับที่ 39 ถึง 41 แห่งรัฐธรรมนูญแห่งราชอาณาจักรไทย พุทธศักราช 2540 ซึ่งส่งผลต่อวิวัฒนาการและสถานภาพของสื่ออย่างมากตลอดระยะเวลากว่า 20 ปีที่ผ่านมา โดยเฉพาะในประเด็นที่เกี่ยวข้องกับการจัดสรรสื่อสิ่งพิมพ์ ความคืบหน้าของสภาปฏิรูปแห่งชาติในการประชุมชุดนี้ และกำกับต่อการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม

- พัฒนาการกำกับดูแลสื่อในอดีต
 - ยุคคณะกรรมการการบริหารวิทยุกระจายเสียง ทวีปเอเชีย (กบว.)(พ.ศ.2518-2535)
 - ช่วงหลังปี 2500 เป็นยุคที่กิจการวิทยุและโทรทัศนมีการกระจายตัวและเติบโตอย่างรวดเร็ว แต่ประสบปัญหาด้านการควบคุมมาตรฐานเทคโนโลยีให้มีคุณภาพ รวมถึงการจัดตั้งสถานีที่ไม่ได้รับการอนุญาต โดยเฉพาะอย่างยิ่งกิจการวิทยุที่เน้นการเปิดให้เอกชนเข้ามาประกอบการได้รับการก้าวสู่ организацияของจิตอาสา จอห์น บักช์ ซึ่งให้ความคิดเห็นที่สำคัญในการเสนอรายชื่อผู้มีความคุ้นเคยกับการจัดสรรสื่อทั้งวิทยุและโทรทัศน์ อยากให้ถอนตัวจากสื่อสิ่งพิมพ์ ทวีปเอเชีย ทวีปอเมริกา และถอนตัวจากสื่อสิ่งพิมพ์ทั่วโลก ทั้งในเรื่องของคุณภาพ และความมั่นคง 2539

- ภายหลังเหตุการณ์ 14 ตุลาคม 2516 ที่นักศึกษาและประชาชนสามารถโค่นรัฐบาลเสด็จการของจอมพลถนอมลงได้ ระยะทางทางการเมืองจึงเริ่มมีความเป็นประชาธิปไตยมากขึ้น สื่อมวลชนต่างๆโดยเฉพาะหนังสือพิมพ์ทวีปอเมริกาที่มีบทบาทสำคัญที่เกิดขึ้นในสมัยรัฐบาลของจอมพลถนอม กิตติขจร ได้มีการเติบโตของสื่อมวลชนที่มีการจัดตั้งขึ้นเพื่อเป็นศูนย์กลางข้อมูลเพื่อใช้ในการเป็นเครื่องมือของรัฐในการบิดเบือนข้อมูลเพื่อป้ายสีต่อครูหลักการเมืองของตนโดยเฉพาะนักศึกษา
กระแสดังกล่าวได้พัฒนาเป็นข้อเรียกร้องให้จัดระเบียบใหม่ เพื่อไม่ให้เกิดการคอร์รัปชั่นหรือถูกใช้เป็นเครื่องมือในการขู่เขี้ยวในการเลือกตั้งหลังปี 2517 ซึ่งมี ม.ร.ว.คึกฤทธิ์ ปราโมช เป็นนายกรัฐมนตรี จึงปรับปรุงระบบวิทยุและโทรทัศน์ โดยการออกระเบียบว่าด้วยวิทยุกระจายเสียงและวิทยุโทรทัศน์ บ.ศ. 2518 และจัดตั้งคณะกรรมการบริหารวิทยุกระจายเสียงและวิทยุโทรทัศน์ (กบว.) ซึ่งเพื่อควบคุมดูแลและอนุญาตการจัดตั้งสถานีและควบคุมเนื้อหา

ตามระเบียบว่าด้วยวิทยุกระจายเสียงและวิทยุโทรทัศน์ บ.ศ. 2518 นั้น กบว. บริหารโดยคณะกรรมการบริหารซึ่งมีนายกรัฐมนตรีเป็นประธานกรรมการ ส่วนกรรมการคนอื่นๆ ได้ 16 คน นั้นมามาจาก ข้าราชการระดับอธิบดี (กรมประชาสัมพันธ์ 2 คน กรมไปรษณีย์ โทรเลข 2 คน กรมคดวัร และกรมประมวลข่าวกลาง อย่างละ 1 คน) เลขาธิการคณะกรรมการหรือผู้แทนจากภาครัฐ (สถานีการทหาร กองทัพ กองทัพเรือ กองทัพอากาศ อย่างละ 1 คน) และผู้แทนตามแต่ละหน่วยงานที่กำหนด (สำนักนายกรัฐมนตรี 2 คน กระทรวงศึกษาธิการ และกระทรวงต่างประเทศ อย่างละ 1 คน) ทั้งนี้ กบว. มีหน้าที่หลัก คือการออกระเบียบ (1) การกำหนดเงื่อนไขและวิธีการพิจารณาและอนุญาตจัดตั้งหรือย้ายสถานี (2) การกำหนดหลักเกณฑ์ในการดำเนินการโฆษณาและการบริหารธุรกิจในการดำเนินรายการ (3) การกำหนดเวลาในการออกอากาศรายการ และ (4) การให้คำแนะนำ ควบคุม ดูแล และตรวจสอบความเรียบร้อยเพื่อให้การดำเนินการเป็นระเบียบ

อย่างไรก็ตาม คณะกรรมการชุดนี้ไม่สามารถจัดระเบียบวิทยุและโทรทัศน์ได้ครบถ้วนตามเป้าประสงค์ของการจัดตั้ง เพราะ กบว. ไม่มีอำนาจอย่างแท้จริง ตัวอย่างเช่น การจัดตั้งสถานีวิทยุของส่วนราชการต่างๆ โดยเฉพาะกองทัพที่ดำเนินการในหน่วยงานดังกล่าวที่เคยดำเนินการดังกล่าว กบว. ไม่สามารถเข้าไปตรวจสอบได้ กบว. จึงทำหน้าที่เพียงเซนเซอร์เพื่อควบคุมเนื้อหาที่มีลักษณะวิพากษ์วิจารณ์รัฐบาลที่เกี่ยวกับการเมืองหรือพาดพิงถึงการเมือง ละคร และภาพยนตร์ เพื่อไม่ให้มีการแสดงความเห็นทางการเมืองที่ไม่ดีในการวิทยุวิทยุโทรทัศน์

หลักเหตุการณ์ 6 คุ้มภูมิ 2519 กบว. มีการเสนอข่าวที่มีลักษณะวิทยุวิทยุโทรทัศน์วัฒนธรรมในเรื่องต่างๆ มากขึ้นกว่าเดิม เมื่อจากคณะกรรมการบริหารและเลขาธิการได้ยินเห็นว่ามีการดำเนินการไม่เป็นไปตามระเบียบที่ 15 และ 17 (หรือ บ.ศ. 15 และ 17) กบว. จึงส่งผลให้เกิดความขัดแย้งกับกบว. โดยให้เหตุผลว่า จัดตั้งการควบคุมเนื้อหาเพื่อให้เกิดความมั่นคงภายในชาติ ส่งเสริมสถาบันการศึกษา ปกป้องการกระทบกระเทือนความมั่นคงของชาติ... อย่างเคร่งครัด และกำหนดว่า "รายการความรู้ การปฎิบัติการอธิบาย สนเทศ สิ่งมีประโยชน์หรือการแสดงที่เกี่ยวกับการเมืองหรือพาดพิงทางการเมือง ให้ทางสถานีที่ดำเนินการบันทึกไว้ล่วงหน้าเป็นเวลา 2 ปี" นั้นแต่เป็นราย
การที่คณะกรรมการอนุมัติ” (พิธีรอง รามสูต, ยุวโกศล, 2546) คำสั่งแก้ล้างย่นส่งผลให้ กบว. สามารถควบคุมเนื้อหาไม่ใช่แค่เฉพาะข่าวเท่านั้น แต่อย่างควบคุมเนื้อหาได้ทุกกลไกและทั้งการให้ความรู้ ข่าว บัญญัติกฎ ความบันเทิง ตลอดจนการโฆษณา

กล่าวโดยสรุปแล้ว กบว. ทำหน้าที่เป็นพื้นฐานขององค์ความคุมดูและเนื้อหาที่เกี่ยวข้องกับการวิทยุกระจายเสียงวิทยุโทรทัศน์ทั่วไป เพราะมีองค์ประกอบอย่างมีศักยภาพของประชาชนในการแสดงความเห็น สถานภาพของกิจการวิทยุกระจายเสียงและวิทยุโทรทัศน์ซึ่งยังไม่สามารถปรับตัวได้เป็นไปตามข้อเรียกร้องของสังคม เพื่อให้เกิดความโปร่งใส และควบคุมได้ เพื่อประโยชน์ของประชาชนอย่างแท้จริง แต่ยังคงอยู่ในสภาพที่ถูกใช้เป็นเครื่องจำกัดสิทธิเสรีภาพของประชาชนเสี่ยง ที่เรารายไปกว่านั้น กบว.ยังทำให้ความเข้มข้นในการควบคุมมีมากขึ้นอีกด้วย

○ ยุคคณะกรรมการกิจการวิทยุกระจายเสียงและวิทยุโทรทัศน์แห่งชาติ (กกช.) (พ.ศ. 2535-2540)

ในเวลาต่อมา การเมืองไทยเกิดการเปลี่ยนแปลงที่สำคัญขึ้นอีกครั้ง คือการรัฐประหารโดยคณะรักษาความสงบแห่งราชอาณาจักรไทย พ.ศ.2534 จึงมีการเลือกตั้งทั่วไปในเดือนมีนาคม 2535 โดยพรรคที่ชนะการเลือกตั้งคือพรรคสามัคคีไทยนิยม มีนายชวลิต ศรีสวัสดิ์ ที่มีหลักการในการคัดเลือกที่มีคุณภาพ และมีการชุมนุมประท้วงทั่วประเทศในเดือนเมษายน 2534 แต่ยังคงอยู่ในสภาพที่ถูกใช้เป็นเครื่องจำกัดสิทธิเสรีภาพของประชาชนเสี่ยง

หลังจากเหตุการณ์สงบลง แผนนักหายเสียง บัดัยการ รวมถึงนักวิชาชีพสื่อสารมวลชนและองค์กรพัฒนาเอกชนต่างๆ ออกมาเรียกร้องให้มีการปฏิรูปวิทยุกระจายเสียง วิทยุโทรทัศน์โดยมีการเสนอข้อเสนอในเรื่องของเสรีภาพในการนำเสนอข่าวสารและความคิดเห็นมากขึ้น รัฐบาลรักษาการซึ่งมี นายอานันท์ ปันยารชุน เป็นนายกรัฐมนตรี ได้ประกาศเปิดรับแนวคิดการร่างระเบียบวิทยุกระจายเสียง วิทยุโทรทัศน์ พ.ศ.2535 ซึ่งแก้ไขเพิ่มเติมจากมาตติของคณะรัฐมนตรีว่าการรับข้อเสนอของประชาชน เช่นการให้ทุกภาคส่วนมีส่วนร่วมในการพิจารณาการปฏิรูประบบวิทยุกระจายเสียง วิทยุโทรทัศน์ ทั้งนี้ สภาที่สำคัญของการปฏิรูปสื่อครั้งนี้ แก้ไขผลิตภัณฑ์ วิทยุกระจายเสียงและวิทยุโทรทัศน์ พ.ศ.2498 แก้ไขเพิ่มเติม พ.ศ.2530 ทั้งนี้ สาระสำคัญของการปฏิรูปสื่อครั้งนี้ มีดังนี้
(1) ให้มีคณะกรรมการกิจการวิทยุกระจายเสียงและวิทยุโทรทัศน์แห่งชาติ (กกช.) หรือ National Broadcasting Commission ซึ่งประกอบด้วยคณะกรรมการทั้งหมด 17 คน (เท่ากับ กบว.) โดยแบ่งเป็น 3 กลุ่มหลัก ได้แก่ ผู้แทนส่วนราชการต่างๆ ที่เกี่ยวข้อง 7 คน (ปลัดกระทรวงกลาโหม ปลัดกระทรวงศึกษาธิการ แขกิจการคณะกรรมการดุษฎีบัณฑิต อาติการไปประเทศ โทรเลข อธิบดี กรมการปกครอง และเลขานุการคณะกรรมการแห่งชาติ) ผู้ทรงคุณวุฒิในด้านนิเทศศาสตร์ วรรณสารศาสตร์ และสื่อสารมวลชน 3 คน และผู้แทนองค์การเอกชนเพื่อสาธารณะประโยชน์ 5 คน (ด้านสตรีและเด็ก 1 คน ด้านคุ้มครองผู้บริโภค 1 คน และด้านการพัฒนา 3 คน) ซึ่งจะเห็นได้ว่าคณะกรรมการ กกช. จุดนี้แตกต่างจาก กบว. เนื่องจากมีสัดส่วนกรรมการที่มาจากภาคประชาชนมากขึ้น

(2) ยกเลิกการตรวจสอบเนื้อหารายการดังเช่นที่เคยปฏิบัติในช่วงที่ยังมี กบว. โดยให้แต่ละสถานีดำเนินการตรวจสอบกันเองภายใน

(3) วางข้อกำหนดเรื่องการโฆษณา โดย กกช. กำหนดเวลาในการโฆษณาทางสถานีวิทยุกระจายเสียงและวิทยุโทรทัศน์ไม่เกินชั่วโมงละ 10 นาที ซึ่งขยายกว้างในยุคก่อน

(4) กกช.กำหนดเวลาในการโฆษณาสำหรับผู้มีสิทธิที่จะโฆษณา ประกอบด้วย 5 ระดับ คือ: สำหรับสถานีโทรทัศน์ที่มีลักษณะที่เป็นสี หลักสูตรเป็นสี หลักสูตรที่มีคุณภาพสูงสุด, สำหรับรายการที่เข้าไปในสถานี เพิ่มจาก 10 นาทีสู่ 15 นาที

(5) ยกเลิก ปร. 15 และ ปร. 17 เพื่อผ่อนคลายสภาพความขังใจของการควบคุมสิทธิเสรีภาพของสื่อ

อาจกล่าวได้ว่าการปฏิรูปสื่อหลังเหตุการณ์พฤษภาทมิฬ ทำให้ยุค “ประชาธิปไตยเบ่งบาน” เกิดขึ้นอีกครั้ง ทั้งกิจการวิทยุกระจายเสียงและวิทยุโทรทัศน์มีการเปิดกว้างมากขึ้น นักวิทยุ นักโทรทัศน์ นักวิชาการปัญญาชน รวมถึงประชาชนทั่วไปได้มีความมั่นใจในการนำเสนอข้อมูลและเผยแพร่ข่าวสารความคิดเห็นต่างๆ ทั้งทางด้านสังคม การเมือง และเศรษฐกิจในที่สาธารณะอย่างเต็มที่ ผ่านสื่อรูปแบบต่างๆ ไม่ว่าจะเป็นวิทยุหรือโทรทัศน์ แม้กระทั่งหนังสือพิมพ์ก็ตาม บรรยายค์ช่วยนั้นจึงเป็นการเปลี่ยนแปลงที่สื่อต้องปรับตัวครั้งสำคัญ

อย่างไรก็ตาม ระเบียบว่าด้วยวิทยุกระจายเสียงและวิทยุโทรทัศน์ พ.ศ.2535 ยังไม่สามารถก้าวกันไปได้อย่างมีประสิทธิภาพ เสนอข่าวสารที่เป็นจริง และเผยแพร่รายการที่มีคุณภาพได้ เนื่องจากสภาพการณ์วิทยุและโทรทัศน์ยังไม่ได้เป็นอิสระจากรัฐอย่างแท้จริง เพราะต้องพึ่งพิงต่อการเป็นสิทธิพื้นฐานของตนเอง ทั้งนี้เหตุผลยังคงมีการตรวจสอบการตีความของตนอย่างหนักขาดไม่ขาด ทำให้สื่อต้องหาแนวทางการออกข่าวที่มีคุณภาพสูงสุด ผ่านการปรับตัวทางการพิจารณาข่าวสารที่จะนำเสนอไปสู่ภานันท์นั้นเอง
การทำงานของ กกช. นั้นเน้นหนักไปที่การกำกับและเซนเซอร์เนื้อหารายการ การตรวจสอบมาตรฐานภาษาไทย หรือการเฝ้าระวังรายการวิทยุและโทรทัศน์ที่อาจเข้าเงื่อนไขที่มีกฎหมาย แต่ยังไม่สามารถอุดหนุนเนื้อหาเพื่อกำหนดให้เป็นไปตามความคาดหวังของกลุ่มประชาชนต่างๆ ได้ สำนักนี้เป็นเพราะสถานีบางแห่งขึ้นกับหน่วยงานราชการที่มีอำนาจในทางปฏิบัติเหนือกว่า กกช. เช่น กองทัพ (สถานีโทรทัศน์ช่อง 5) หรือกรมประชาสัมพันธ์ (อสมท.) ซึ่งหน่วยงานเหล่านี้มักได้รับข้อยกเว้นทางกฎหมาย ทำให้ กกช. ไม่สามารถสั่งการให้หน่วยงานเหล่านี้ปฏิบัติตามได้อย่างมีประสิทธิภาพ ด้วยข้อจำกัดดังกล่าวนี้ กกช. จึงยังคงทำหน้าที่เพื่อดูแลสื่อของรัฐต่อไป โดยเฉพาะด้านการเซนเซอร์และควบคุมเนื้อหาที่วิพากษ์วิจารณ์รัฐบาล (อุบลรัตน์ศิริยุวศักดิ์, 2545)

เนื่องจากปัญหาต่างๆ ดังที่ได้กล่าวมา ทำให้ กกช. ไม่สามารถตอบสนองความต้องการของกลุ่มประชาชนที่หลากหลายได้ รวมถึงประเด็นความอิสระจากรัฐที่ยังทำให้การปฏิบัติหน้าที่ของสื่อไม่มีประสิทธิภาพ ส่งผลให้การจัดทำข่าวเพื่อสร้างแนวทางในการปฏิบัติสื่อที่เหมาะสมยิ่งขึ้น จนกระทั่งในปี 2540 กระแสการปฏิรูปการเมืองในภาพกว้างช่วยเสริมแรงให้การปฏิรูปสื่อมีความเป็นไปได้ และได้รับการสนับสนุนจากหลายภาคส่วนมากขึ้น
ปัญหาสำคัญเกี่ยวกับโครงสร้างตลาดสื่อในนั้น อยู่ที่อำนาจเหนือตลาดของผู้ประกอบการสถานีโทรทัศน์และวิทยุรายใหญ่ที่เอื้อต่อการมีพฤติกรรมเกิดขึ้น และโครงสร้างตลาดหนังสือพิมพ์ในประเทศไทยด้วยในสภาพที่มีการกีดกันโดยธรรมชาติ มีอยู่ในรูปแบบ ซึ่งในการที่ผ่านมา โครงสร้างตลาดสื่อมีการเปลี่ยนแปลงอย่างมาก จากการกีดกันและแพร่กระจายของวิทยุชุมชนและวิทยุธุรกิจท้องถิ่นและการขยายตัวของเคเบิลทีวีและโทรทัศน์ตามที่รวมถึงการเติบโตแบบก้าวกระโดดของสื่อใหม่ (new media) อันเนื่องมาจากแนวโน้มการตอบรับความท้าทายของสื่อ (media convergence) และความแพร่หลายของสินค้าอิเล็กทรอนิกส์ของผู้บริโภค (consumer electronics) แนวทางการปฏิรูปด้านการก้าวกระโดดจึงมีที่มาจากตลาดสื่อวิทยุโทรทัศน์และหนังสือพิมพ์ หากแต่ต้องให้ความสำคัญกับตลาดสื่อใหม่มากขึ้น

ก่อนที่เราจะสามารถเข้าใจโครงสร้างตลาดสื่อ (media market structure) เราจะต้องเข้าใจระบบสื่อด้วยรวม (media system structure) ซึ่งประกอบไปด้วยความเป็นเจ้าของของสื่อ (media ownership) และความสัมพันธ์ระหว่างสื่อสู่กลุ่มต่างๆ เช่น กลุ่มสื่อข่าว ผู้บริโภคสื่อ ผู้บริโภคสื่อ ผู้บริโภคสื่อ และผู้บริโภคสื่อ เช่น ผู้บริโภคสื่อ ผู้บริโภคสื่อ และผู้บริโภคสื่อ รวมถึงกลุ่มประชาสังคมต่างๆ เช่น สภาวิชาชีพ (professional body) และกลุ่มประชาชนที่มีความสัมพันธ์ต่อสื่อ

ในส่วนของโครงสร้างตลาดสื่อ ซึ่งเป็นส่วนสำคัญของโครงสร้างของระบบสื่อ รายงานฉบับนี้จะศึกษาโครงสร้างตลาด (market structure) ของสื่อแต่ละประเภท ได้แก่ วิทยุ โทรทัศน์ หนังสือพิมพ์ และสื่อใหม่ (new media) ซึ่งเป็นปัจจัยที่มีความสำคัญต่อพฤติกรรม (conduct) ของสื่อ ซึ่งจะมีผลสู่ผลลัพธ์ (performance) ของระบบสื่อที่แตกต่างกันออกไป อาทิ สื่อที่มีเจ้าของมีแนวโน้มจะมีพฤติกรรมในการผลิตสารสนเทศที่แตกต่างจากสื่อเอกชน ซึ่งอาจทำให้เกิดผลกระทบต่อสังคมในลักษณะที่แตกต่างกัน ในทำนองเดียวกัน สื่อที่มีเจ้าของมีพฤติกรรมทางการผลิตสื่อต่างจากสื่อเอกชน ทั้งในด้านคุณมาพะของเนื้อหา ความหลากหลายของการตัดสินใจ และสิทธิเสรีภาพของประชาชน เป็นต้น

เนื่องจากโครงการศึกษาวิจัยการปฏิรูปสื่อในส่วนนี้จะแบ่งเนื้อหาออกเป็น 4 ส่วน ส่วนแรก เป็นแนวคิดและทฤษฎีที่เกี่ยวข้อง ส่วนที่สอง จะอธิบายโครงสร้างตลาดของสื่อต้นเดิม (traditional media) และผลประกอบการ ส่วนที่สาม จะอธิบายผลกระทบของการปฏิรูปแบบก้าวกระโดดของสื่อใหม่ (new media) ที่มีต่อโครงสร้างตลาดสื่อดังเดิม และ ส่วนสุดท้าย เป็นสรุปและข้อเสนอเพื่อกำกับดูแลสื่อแบบหลอมรวม.
3.1 แนวคิดและหลักยุทธีที่เกี่ยวข้อง

ในหัวข้อโครงสร้างตลาดสื่อวิทยุ โทรทัศน์ หนังสือพิมพ์ และสื่อใหม่ (new media) นี้ แนวคิดและหลักยุทธีที่เกี่ยวข้องที่ผู้ทำการศึกษาจะใช้เพื่อการวิเคราะห์โครงสร้างตลาดของสื่อต่างๆนั้น แบ่งออกเป็น 2 แนวคิด ได้แก่ กรอบวิเคราะห์โครงสร้างตลาด ประพฤติกรรม และผลผลิต และห่วงโซ่อุปทานแนวตั้ง

กรอบวิเคราะห์โครงสร้างตลาด ประพฤติกรรม และผลผลิต (S-C-P framework)

การผลิตเป็นกิจกรรมทางเศรษฐกิจที่เปลี่ยนวัตถุดิบไปเป็นสินค้าและบริการ โดยมีหน่วยผลิต (firm) ทำหน้าที่ในการผลิตสินค้า หน่วยผลิตที่ผลิตสินค้า/บริการ ในตลาดจะถูกกลุ่มหรือกลุ่มเดียวกัน สำหรับตลาดใดตลาดหนึ่ง จะถูกเรียกรวมกันเป็นอุตสาหกรรม (industry) ในอุตสาหกรรมนั้นประกอบด้วยหน่วยผลิตหลากหลายซึ่งมีลักษณะแตกต่างกันออกไป แต่สิ่งที่เป็นจุดร่วมของหน่วยผลิตเหล่านี้คือการมีส่วนร่วมในตลาดสื่อ ทั้งการผลิต (production) การรวมกันเป็นชุด (packaging) และการกระจายสินค้า/บริการ (distribution) ทั้งนี้ โดยเฉพาะอย่างยิ่ง หน่วยผลิตที่เกี่ยวข้องกันสื่อเนื่องเป็นหน่วยผลิตเชิงพาณิชย์ กล่าวคือเป็นหน่วยผลิตที่ดำเนินการผลิตโดยมุ่งหวังกำไรสูงสุด (profit maximization) เป็นสำคัญ แม้ว่าจะมีข้อยกเว้นบางกรณี เช่น สื่อมวลชนที่ดำเนินการ แต่แนวคิดและหลักยุทธีด้านเศรษฐศาสตร์อุตสาหกรรมนั้นยังมุ่งเน้นการวิเคราะห์ผลที่เกิดขึ้นในอุตสาหกรรม (performance) จากประพฤติกรรม (conduct) ของหน่วยผลิตเหล่านี้ภายใต้โครงสร้างตลาด (structure) แบบต่างๆ เช่น ภายใต้โครงสร้างตลาดที่มีการจำกัดการแข่งขัน หน่วยผลิตอาจมีประสงค์ที่จะแข่งขันโดยตั้งราคาสินค้า/บริการ สูงกว่าในตลาดที่มีการแข่งขัน และส่งผลต่อตลาด เป็นต้น ทั้งนี้ แม้ว่าจะมีแนวคิดใหม่ๆ ที่ได้ยิงถึงความคิดหนึ่งใหม่ของสมควร แต่ก็ยังคงความคิดนี้ยังสามารถใช้อธิบายปรากฏการณ์ที่เกิดขึ้นในตลาดได้ เช่น ผู้ทำการศึกษาจะใช้ความคิดนี้เป็นแนวคิดหลักในการวิเคราะห์โครงสร้างตลาดสื่อ ในหัวข้อนี้

ห่วงโซ่อุปทานแนวตั้ง (vertical supply chain)

การผลิตสินค้าหรือบริการใดๆ ในระบบเศรษฐกิจมักมีขั้นตอนในการผลิตหลายขั้นตอน โดยทั่วไปแล้วขั้นตอนในการผลิตเหล่านี้สามารถแบ่งแยกออกกันได้ตามลำดับในกระบวนการผลิต เช่นเริ่มจากกระบวนการผลิตในขั้นตอนแรก (upstream) จนกระทั่งสุดท้ายในขั้นตอนผลิตสินค้าปลายทาง (downstream) การแบ่งแยกขั้นตอนในการผลิตโดยใช้แนวคิดเรื่องห่วงโซ่อุปทานแนวตั้ง (vertical supply chain) เช่นนี้จะทำให้สามารถทำความเข้าใจลักษณะของอุตสาหกรรมแต่ละอุตสาหกรรมได้ง่ายขึ้น รวมถึงอุตสาหกรรมสื่อซึ่งเป็นหัวใจสำคัญของงานศึกษาฉบับนี้
ในอุตสาหกรรมสื่อนั้น ห่วงโซ่อุปทานแนวดิ่งซึ่งเชื่อมโยงผู้ผลิตกับผู้บริโภคอาจแบ่งอย่างคร่าวๆ ออกได้เป็น 3 ขั้นตอนหลัก ได้แก่ (1) การผลิต (production) (2) การรวมเป็นชุด (packaging) และ (3) การกระจายสินค้า/บริการ (distribution) (Doyle, 2013: 19-22) โดยเริ่มต้นจากการผลิตเนื้อหาการผลิตโดยผู้ผลิตการผลิตเมื่อที่จะถูกนำขึ้นมารวบรวมไว้ด้วยกันโดยผู้ให้บริการช่องรายการเพื่อเตรียมเผยแพร่หรือออกอากาศทางโทรทัศน์และวิทยุ หรือตีพิมพ์ทางหนังสือพิมพ์ และกระจายสินค้า/บริการนั้นๆ ผ่านผู้ให้บริการโครงข่าย (network provider) และสิ่งอำนวยความสะดวก (facility provider) ไปยังผู้รับชมและรับฟังในกรณีของสื่อโทรทัศน์และวิทยุ และสายส่งในการนี้ของหนังสือพิมพ์

3.2 โครงสร้างตลาดของสื่อดั้งเดิม (traditional media)

3.2.1 โครงสร้างตลาดสื่อวิทยุ

ตามยุทธศาสตร์ที่ 6 ในแผนแม่บทกิจการกระจายเสียง และกิจการโทรทัศน์ ฉบับที่ 1 (พ.ศ.2555-2559) นั่น ผู้บริโภคสัญญาณวิทยุกระจายเสียงและวิทยุโทรทัศน์ไปสู่การรับส่งสัญญาณในระบบดิจิตอล เพื่อให้การใช้สื่อเป็นไปอย่างมีประสิทธิภาพ โดยในส่วนของกิจการกระจายเสียงนั้น ได้มีการเปลี่ยนแปลงเป็นมูลย์การย้ายเงินจาก “การออกประกาศแผนการปรับเปลี่ยนระบบการรับส่งสัญญาณวิทยุกระจายเสียงเป็นระบบดิจิตอล” เป็นการจัดทำแผนพัฒนาการกระจายเสียงในภาพรวม เนื่องจากมีการเปลี่ยนแปลงนโยบายการกำหนดลักษณะการกระจายเสียง โดยให้ยังคงมีการรับส่งสัญญาณวิทยุกระจายเสียงในระบบแอนะล็อก

เนื่องจากประเทศไทยยังไม่มีการเปลี่ยนการรับส่งสัญญาณวิทยุกระจายเสียงไปสู่การรับส่งสัญญาณในระบบดิจิตอลทั้งหมดที่กล่าวมานั้น ดังนั้น ในรายงานฉบับนี้จะกระทำการสร้างตลาดสื่อวิทยุกระจายเสียงของการประกอบธุรกิจในการกระจายเสียง โดยให้ยังคงมีการรับส่งสัญญาณวิทยุกระจายเสียงในระบบแอนะล็อก

- จำนวนผู้ใช้และถือครองคลื่นความถี่ในกิจการกระจายเสียง

จากแผนแม่บทการบริหารคลื่นความถี่ (พ.ศ. 2555) ที่ออกโดย กสทช. เมื่อวันที่ 4 เมษายน พ.ศ. 2555 ได้มีการกำหนดยุทธศาสตร์การคืนคลื่นความถี่เพื่อนำไปใช้ในวิทยุกระจายเสียงและได้กำหนดแนวทางการเรียกคืนคลื่นความถี่ที่ใช้ในกิจการวิทยุกระจายเสียงไว้ 3 กรณี คือ

1) ในกรณีของภาคเอกชนและรัฐวิสาหกิจที่อนุญาต ให้สัมปทาน หรือทำสัญญาให้ผู้อื่นนำคลื่นความถี่ไปใช้ในการประกอบกิจการจะต้องคืนคลื่นความถี่เมื่อสิ้นสุดระยะเวลาการอนุญาต อาญาสัมปทาน หรืออายุของสัญญา

2) ในกรณีของผู้ที่ได้รับอนุญาตให้ใช้คลื่นความถี่ และได้มีการกำหนดอายุให้คลื่นความถี่ ต้องดำเนินการคืนคลื่นความถี่เมื่อสิ้นสุดระยะเวลาการอนุญาต
3) ในกรณีที่ไม่ได้กำหนดอายุการใช้งานคลื่นความถี่ไว้ ให้ผู้ได้รับอนุญาตใช้คลื่นความถี่กับคลื่นความถี่ตามเวลาที่ กสทช. กำหนด ซึ่งกสทช. จะกำหนดให้ผู้ได้รับอนุญาตใช้คลื่นความถี่อย่างต่อเนื่องประโยชน์สาธารณะ และความจำเป็นของการประกอบกิจการควบคู่กันไป ซึ่งในส่วนของกิจการกระจายเสียงได้กำหนดให้คืนคลื่นความถี่ภายใน 5 ปี (พ.ศ. 2560) นับจากวันที่แผนแม่บทการบริหารคลื่นความถี่ใช้บังคับ

อย่างไรก็ตาม สถานภาพของสถาบันวิทยุกระจายเสียงในประเทศไทยกว่า 506 สถาบันทั่วประเทศ ซึ่งแบ่งเป็นวิทยุระบบ FM จำนวน 313 สถานี และวิทยุระบบ AM 193 สถานี ยังคงมีภาครัฐและรัฐวิสาหกิจเป็นผู้ถือครองคลื่นความถี่วิทยุกระจายเสียงทั้งหมด ซึ่งเป็นไปตามนโยบายทั่วประเทศ มาตรา 74 พระราชบัญญัติการประกอบกิจการกระจายเสียงและกิจการโทรทัศน์ พ.ศ. 2551 ที่อนุญาตให้ส่วนราชการ รัฐวิสาหกิจ และหน่วยงานอื่นของรัฐที่ประกอบกิจการกระจายเสียงหรือกิจการโทรทัศน์อยู่ในวันที่พระราชบัญญัติดังกล่าวใช้บังคับสามารถประกอบกิจการได้ต่อไปจนถึงวันที่กำหนดในแผนแม่บทการกระจายเสียงและกิจการโทรทัศน์ใช้บังคับ โดยจะต้องจัดทำแผนประกอบกิจการกระจายเสียงและกิจการโทรทัศน์เพื่อขอรับใบอนุญาตจากคณะกรรมการ คณะกรรมการจะออกใบอนุญาตประกอบกิจการให้แก่ส่วนราชการ รัฐวิสาหกิจ และหน่วยงานอื่นของรัฐโดยคำนึงถึงความจำเป็นของการประกอบกิจการและภารกิจในการใช้คลื่นความถี่ และในมาตรา 75 ของพระราชบัญญัติวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม พ.ศ. 2551 ที่ระบุว่าผู้ที่ได้รับอนุญาต ได้สัมปทานหรือสัญญาจากส่วนราชการ รัฐวิสาหกิจ และหน่วยงานอื่นของรัฐที่ประกอบกิจการกระจายเสียงหรือกิจการโทรทัศน์อยู่ในวันที่พระราชบัญญัติดังกล่าวใช้บังคับสามารถดำเนินกิจการต่อได้จนกว่าจะสิ้นสุดสัญญาหรือสัญญาสัมปทาน โดยภาครัฐ รัฐวิสาหกิจ หรือบุคคลที่ถือครองคลื่นความถี่เพื่อประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคมจะต้องแจ้งรายละเอียดการใช้ประโยชน์คลื่นความถี่ และเหตุผลที่จำเป็นในการถือครองคลื่นความถี่ ตลอดจนรายละเอียดเกี่ยวกับการอนุญาต สัมปทาน หรือสัญญา รวมถึงระยะเวลาการอนุญาตสัมปทาน หรือสัญญา ดำเนินการต่อเนื่องกันในส่วนของภารกิจในการประกอบกิจการกระจายเสียง การบริการโทรทัศน์และกิจการโทรคมนาคมแห่งชาติในประเทศไทย มีการดำเนินการต่อกล่าวเป็นไปตามระบบเฉพาะกล่าว มาตรา 82 ของพระราชบัญญัติองค์กรจัดสรรคลื่นความถี่และกิจการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม พ.ศ. 2553

ในปัจจุบัน มีส่วนราชการรัฐวิสาหกิจ และหน่วยงานอื่นของรัฐที่ถือครองคลื่นความถี่วิทยุกระจายเสียงจำนวน 27 หน่วยงาน ดังนี้

1. บริษัท อสมท จำกัด (มหาชน)
2. กรมประชาสัมพันธ์
3. กองทัพบก.
4. กองทัพเรือ
5. กองทัพอากาศ
6. กองบัญชาการกองทัพไทย
7. กรมการพลังงานทหาร
8. กรมการพลังงานทหารอากาศ
9. กรมการพลังงานทหารอากาศ
10. กรมการพลังงานทหารอากาศ
11. กรมการพลังงานทหารอากาศ
12. กรมการพลังงานทหารอากาศ
13. กรมการพลังงานทหารอากาศ
14. กรมการพลังงานทหารอากาศ
15. กรมการพลังงานทหารอากาศ
16. กรมการพลังงานทหารอากาศ
17. กรมการพลังงานทหารอากาศ
18. กรมการพลังงานทหารอากาศ
19. กรมการพลังงานทหารอากาศ
20. กรมการพลังงานทหารอากาศ
21. กรมการพลังงานทหารอากาศ
22. กรมการพลังงานทหารอากาศ
23. กรมการพลังงานทหารอากาศ
24. กรมการพลังงานทหารอากาศ
25. กรมการพลังงานทหารอากาศ
26. กรมการพลังงานทหารอากาศ
27. กรมการพลังงานทหารอากาศ
หากพิจารณาแยกตามระบบการส่งสัญญาณวิทยุกระจายเสียงจะพบว่า ในการส่งสัญญาณวิทยุกระจายเสียงระบบ AM นั้น หน่วยงานที่ได้รับอนุญาตมากที่สุด ได้แก่ กองทัพบก และกรมประชาสัมพันธ์ โดยได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ AM จำนวน 78 และ 57 ช่องสถานี ตามลำดับ คิดเป็นประมาณร้อยละ 40 และ 30 ของจำนวนช่องสถานีทั้งหมดในระบบ AM ตามลำดับ
ภาพที่ 3.1 หน่วยงานที่ได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ AM

- กรมประชาสัมพันธ์ 78
- กรมประชาสัมพันธ์ 58
- กรมอุตสาหกรรม 57
- หน่วยงานอื่นๆ 72

ขณะที่ในการส่งสัญญาณวิทยุกระจายเสียงระบบ FM นั้น หน่วยงานที่ได้รับอนุญาตมากที่สุดได้แก่ กรมประชาสัมพันธ์, บริษัท อสมท จำกัด (มหาชน) และกองทัพบก โดยได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ FM จำนวน 88, 60 และ 49 ช่องสถานีตามลำดับ คิดเป็นประมาณร้อยละ 28, 19 และ 16 ของจำนวนช่องสถานีทั้งหมดในระบบ FM ตามลำดับ

ภาพที่ 3.2 หน่วยงานที่ได้รับอนุญาตให้ใช้และถือครองคลื่นความถี่ระบบ FM

- กรมประชาสัมพันธ์ 88
- กรมอุตสาหกรรม 60
- กองทัพบก 49
- หน่วยงานอื่นๆ 49

- ผู้ประกอบกิจการกระจายเสียง

แม้ว่าผู้ใช้และถือครองคลื่นความถี่ในกิจการกระจายเสียงจะเป็นหน่วยงานในภาครัฐ และรัฐวิสาหกิจ แต่ส่วนใหญ่แล้วผู้ประกอบกิจการกระจายเสียง หรือผู้ดำเนินงานสถานีวิทยุทุกแห่งเป็นบริษัทเอกชนซึ่งเช่าช่วงเวลาจากส่วนราชการ หน่วยงานของรัฐ หรือรัฐวิสาหกิจที่เป็นผู้ถือครองคลื่นความถี่ ซึ่งในพระราชบัญญัติ
องค์กรจัดสรรคลื่นความถี่และกำกับการประกอบกิจการวิทยุกระจายเสียง วิทยุโทรทัศน์ และกิจการโทรคมนาคม พ.ศ. 2553 ได้กำหนดให้ผู้ที่ได้รับการอนุญาต หรือได้รับสัญญาสัมปทานจากหน่วยงานรัฐหรือรัฐวิสาหกิจสามารถดำเนินกิจการต่อไปได้จนกระทั่งสิ้นสุดระยะเวลาการอนุญาตหรือสิ้นสุดสัญญาสัมปทาน

หากพิจารณาจากสถานีวิทยุที่ออกอากาศในระบบ FM ในพื้นที่กรุงเทพมหานครในปัจจุบัน สถานีวิทยุจำนวนประมาณสามในสี่ของจำนวนสถานีออกอากาศในระบบ FM ในพื้นที่กรุงเทพมหานครทั้งหมด มีผู้ดำเนินงานเป็นบริษัทเอกชน ขณะที่หน่วยงานที่ได้รับอนุญาตที่ดำเนินงานเองนั้นมีเพียงบางหน่วยงานเท่านั้น เช่น กรมประชาสัมพันธ์ และ บริษัท อสมท จำกัด (มหานคร) เป็นต้น (ดูตารางที่ 3.1)

ตารางที่ 3.1 ผู้ดำเนินงานสถานีวิทยุ

<table>
<thead>
<tr>
<th>คลื่นความถี่ (MHz)</th>
<th>หน่วยงานที่ได้รับอนุญาต</th>
<th>ผู้ดำเนินงานสถานีวิทยุ</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.5</td>
<td>สานักงานเลขานุการสภาผู้แทนราษฎร</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>กรมประชาสัมพันธ์</td>
<td></td>
</tr>
<tr>
<td>88.5</td>
<td>กองทัพเรือ</td>
<td>บริษัท อาร์เอส จำกัด (มหาชน)</td>
</tr>
<tr>
<td>89</td>
<td>กองทัพบก</td>
<td>บริษัท เอไทม์ มิเดีย จำกัด</td>
</tr>
<tr>
<td>89.5</td>
<td>กรุณวิทยาสภานโยบายให้การสื่อสารคลื่น音频</td>
<td>บริษัท เอ.เอส.ไนน์ตี้วัน จำกัด</td>
</tr>
<tr>
<td>90</td>
<td>กองทัพบก</td>
<td>บริษัท ช้างไท อินเตอร์เทนเมนท์ จำกัด</td>
</tr>
<tr>
<td>90.5</td>
<td>กรมพลังงานทหาร กองทัพบก</td>
<td>บริษัท เบลลั่น โปรดแคสต์ คอร์ปอร์เรชั่น จำกัด (มหาชน)</td>
</tr>
<tr>
<td>91</td>
<td>สานักงานค่าวิจารณ์แห่งชาติ</td>
<td></td>
</tr>
<tr>
<td>91.5</td>
<td>กองทัพบก</td>
<td>บริษัท โมโน เทคโนโลยี จำกัด (มหาชน)</td>
</tr>
<tr>
<td>92</td>
<td>กระทรวงศึกษาธิการ</td>
<td></td>
</tr>
<tr>
<td>92.5</td>
<td>กรมประชาสัมพันธ์</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>กองทัพเรือ</td>
<td>บริษัท อาร์ เอส จำกัด (มหาชน)</td>
</tr>
<tr>
<td>93.5</td>
<td>กรมประชาสัมพันธ์</td>
<td>บริษัท ทำดีมา โปรดแคสต์ อินเตอร์เนชั่นแนล จำกัด</td>
</tr>
<tr>
<td>94</td>
<td>กองทัพบก</td>
<td>บริษัท เอไทม์ มิเดีย จำกัด</td>
</tr>
<tr>
<td>94.5</td>
<td>กองทัพบก</td>
<td>บริษัท วิทยุฟิลิปส์ จำกัด</td>
</tr>
<tr>
<td>95</td>
<td>อสมท</td>
<td></td>
</tr>
<tr>
<td>95.5</td>
<td>กรมประชาสัมพันธ์</td>
<td>บริษัท พีช-เทอร์ เรดิโอ จำกัด</td>
</tr>
<tr>
<td>96</td>
<td>กองทัพบก</td>
<td>บริษัท สยามอินเตอร์มิเดีย จำกัด (มหาชน)</td>
</tr>
<tr>
<td>96.5</td>
<td>อสมท</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>กรมประชาสัมพันธ์</td>
<td></td>
</tr>
<tr>
<td>97.5</td>
<td>อสมท</td>
<td>บริษัท ซีเอมิชชั่น จำกัด</td>
</tr>
<tr>
<td>98</td>
<td>กองทัพบก</td>
<td>บริษัท พีช-เทอร์ เรดิโอ จำกัด</td>
</tr>
<tr>
<td>98.5</td>
<td>สานักงาน กสทช.</td>
<td>บริษัท อินเตอร์เนชั่นแนล มิเดีย จำกัด</td>
</tr>
<tr>
<td>99</td>
<td>อสมท</td>
<td></td>
</tr>
<tr>
<td>99.5</td>
<td>กองบัญชาการกองทัพไทย</td>
<td>มูลนิธิสานักงานทรัพย์สินส่วนพระมหากษัตริย์</td>
</tr>
<tr>
<td>คลื่นความถี่ (MHz)</td>
<td>หน่วยงานที่ได้รับอนุญาต</td>
<td>ผู้ดำเนินงานสถานีวิทยุ</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>100</td>
<td>กองทัพบก</td>
<td>บริษัท แปซิฟิค คอร์ปอเรชั่น จำกัด</td>
</tr>
<tr>
<td>100.5</td>
<td>อสมท</td>
<td>บริษัท วี อาร์ วัน มีเดีย กรุ๊ป จำกัด</td>
</tr>
<tr>
<td>101</td>
<td>กองบัญชาการกองทัพไทย</td>
<td>บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด</td>
</tr>
<tr>
<td>101.5</td>
<td>จุฬาลงกรณ์มหาวิทยาลัย</td>
<td>บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด</td>
</tr>
<tr>
<td>102</td>
<td>กองทัพ</td>
<td>บริษัท ซี เอ็ม เจี (ประเทศไทย) จำกัด</td>
</tr>
<tr>
<td>102.5</td>
<td>กองทัพอากาศ</td>
<td>บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด</td>
</tr>
<tr>
<td>103</td>
<td>กองทัพน้ำ</td>
<td>บริษัท อีซี-เทโร เรดิโอ จำกัด</td>
</tr>
<tr>
<td>103.5</td>
<td>สานักงาน กสทช.</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
<tr>
<td>104</td>
<td>สานักพระราชวัง</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
<tr>
<td>104.5</td>
<td>กองทัพ</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
<tr>
<td>105</td>
<td>กองบัญชาการทหารบก</td>
<td>บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด</td>
</tr>
<tr>
<td>105.5</td>
<td>อสมท</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
<tr>
<td>106</td>
<td>กองทัพอากาศ</td>
<td>บริษัท เชิร์ท (ไฟฟะ) จำกัด</td>
</tr>
<tr>
<td>106.5</td>
<td>สานักงาน กสทช.</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
<tr>
<td>107</td>
<td>อสมท</td>
<td>บริษัท เอไทม์มีเดีย จำกัด</td>
</tr>
</tbody>
</table>

ผู้ดำเนินงานสถานีวิทยุซึ่งเข้าช่วงเวลาจากหน่วยงานที่ได้รับอนุญาตนั้นมีการกระจายอยู่พอดีสมควร บริษัทที่เป็นผู้ดำเนินงานสถานีวิทยุมากกว่า 1 สถานีได้แก่ บริษัท อาร์เอส จำกัด (มหาชน) (2 สถานี), บริษัท เอไทม์มีเดีย จำกัด (3 สถานี), บริษัท เอไทม์ เรดิโอ จำกัด (3 สถานี), บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด (4 สถานี), บริษัทบีอีซี-เทโร เรดิโอ จำกัด (3 สถานี), และบริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด (4 สถานี) ผู้ประกอบการทั้ง 5 รายนี้ดำเนินงานสถานีวิทยุรวม 14 สถานี คิดเป็นร้อยละ 35 ของจำนวนสถานีออกอากาศในระบบ FM ในพื้นที่กรุงเทพมหานครทั้งหมด

● ผลประกอบการ

ในช่วง 3 ปีที่ผ่านมา (2555-2557) นั้น ผู้ดำเนินงานสถานีวิทยุรายใหญ่นั้นมีผลประกอบการที่มีแนวโน้มการกำไรของธุรกิจอยู่ในระดับสูง เมื่อพิจารณาจากสัดส่วนกำไรก่อนค่าเสื่อมราคาและค่าใช้จ่ายติดต่ำสุด (EBITDA) ต่อรายได้รวมแล้วพบว่า สัดส่วนดังกล่าวของ บริษัท อินดิพนเดนท์คอมมิวนิเคชั่นเน็ตเวิร์ก จำกัด เทียบเท่าประเภทที่เคยติดต่ำสุดในประมวลณี้เพียง 5.5 ขณะที่ บริษัท เอไทม์มีเดีย จำกัด (บริษัทลูกของ บริษัท ซีเอ็มเอ็ม มีเดีย) ร้อยละ 14.2 เป็นร้อยละ 27.8 อย่างไรก็ตาม บริษัท เอไทม์ เรดิโอ จำกัด (บริษัทลูกของ บริษัท เอไทม์ เรดิโอ เอ็นเตอร์เทนเมนท์ จำกัด (มหาชน)) นั้นเป็นข้อยกเว้น โดยบริษัทดังกล่าวมีผลตัดส่วน EBITDA/รายได้รวม ลดลงอย่างต่อเนื่องจากประมาณร้อยละ 24 ในปี 2555 จนตัดสูบในปี 2557
3.2.2 โครงสร้างตลาดสื่อโทรทัศน์

ตามยุทธศาสตร์ที่ 6 ในการปฏิบัติตามกิจการกระจายเสียง และกิจการโทรทัศน์ ฉบับที่ 1 (พ.ศ.2555-2559) นั้น มุ่งเน้นการสร้างสังคมที่มีระบบกระจายเสียงและโทรทัศน์ที่เป็นไปตามยุทธศาสตร์ที่มีประสิทธิภาพ โดยในส่วนของกิจการโทรทัศน์นั้น ภายหลังจากที่ กสทช. กําหนดให้วันที่ 1 เมษายน 2557 เป็นวันเริ่มต้นของการเปลี่ยนผ่านไปสู่ระบบทีวีดิจิทัล จนถึงปัจจุบันประเทศไทยมีจํานวนสถานีโทรทัศน์ที่มีรวมทั้งสิ้น 28 ช่องรายการ ประกอบไปด้วยของโทรทัศน์ดิจิทัลประเภทบริการทางธุรกิจจำนวน 24 ช่อง และประเภทบริการสาธารณะ 4 ช่อง และยังมีช่องรายการในระบบแอนะล็อกจำนวน 6 ช่องที่ออกผ่านระบบกําลังจะมีการเปลี่ยนผ่านไปสู่ระบบดิจิทัล นอกจากนี้ยังมีโทรทัศน์ระบบแอนะล็อกและโทรทัศน์ผ่านดาวเทียมอีกรวมกันทั้งสิ้น 733 ช่อง 2

การวิเคราะห์ในส่วนนี้จะสนใจเฉพาะกลุ่มผู้ชมสถานีโทรทัศน์ฟรีทีวี 28 ช่องรายการเท่านั้น เนื่องจากเป็นกลุ่มผู้ชมหลักของโทรทัศน์ในประเทศไทย ด้วยจํานวนสถานีโทรทัศน์ที่เพิ่มขึ้นแบบขับเคลื่อนโดยยอดไม่สูงมากนัก จํานวนผู้ชมยังคงมีแนวโน้มเพิ่มเติม ซึ่งมีความน่าสนใจในด้านพัฒนาการของผู้ชมในการเลือกชมรายการเมื่อมีจํานวนช่องที่เพิ่มมากขึ้น เนื่องจากรายได้หลักของธุรกิจโทรทัศน์แบบฟรีทีวีคือค่าโฆษณาซึ่งจะวัดจากจํานวนผู้ชมโทรทัศน์ (eyeballs) นั้นเอง

- ความนิยมในการรับชมรายการ

ภาพที่ 3.3 แสดงความนิยม (Rating) โดยวัดจากการรับชมที่มีอายุตั้งแต่ 15 ปีขึ้นไป โดยช่วงเวลา 6-24 น. พบว่าก่อนเริ่มออกอากาศทีวีดิจิตัลเมื่อวันที่ 1 เมษายน 2557 สถานีโทรทัศน์ที่ได้รับความนิยมสูงสุดมาโดยตลอดของประเทศไทยคือช่อง 7 และช่อง 3 ตามลำดับ ภายหลังจากทีวีดิจิทัลเริ่มออกอากาศจํานวนผู้ชมของช่อง 7 ลดลงจากระดับ 4.133 เป็น 3.372 ใกล้เคียงกับระดับความนิยมของช่อง 3 ซึ่งไม่ได้รับผลกระทบจากการเปลี่ยนระบบมากนักในระยะ 3 เดือนแรก แต่เริ่มมีผลกระทบในเดือนที่ 4 (สิงหาคม 2557) ความนิยมในการรับชมรายการของช่อง 3 แอนะล็อกลดลงมาโดยตลอด ในขณะที่ช่อง 7 กลับมีระดับความนิยมเพิ่มขึ้นไปสูงสุดต่อเนื่องตั้งแต่มีทีวีดิจิทัลแล้ว

1 บริการสาธารณะ หมายถึง บริการที่มีวัตถุประสงค์เพื่อให้บริการสาธารณะ แบ่งเป็นสามประเภท ได้แก่ 1) บริการสาธารณะประเภทที่หนึ่ง คือ การประกอบกิจการกระจายเสียงหรือกิจการโทรทัศน์ที่มีวัตถุประสงค์เพื่อส่งเสริมความรู้ในด้านต่างๆ เช่น การศึกษา ศาสนา ศิลปวัฒนธรรม วัฒนธรรมท้องถิ่น วัฒนธรรมเกษตร และการส่งเสริมอาชีพสินค้าเกษตร 2) บริการสาธารณะประเภทที่สอง คือ การประกอบกิจการกระจายเสียงหรือกิจการโทรทัศน์ที่มีวัตถุประสงค์เพื่อส่งเสริมความรู้สุขภาพหรือความปลอดภัย สาธารณะ และ 3) บริการสาธารณะประเภทที่สาม คือ การประกอบกิจการกระจายเสียงหรือกิจการโทรทัศน์ที่มีวัตถุประสงค์เพื่อส่งเสริมความรู้สุขภาพหรือความปลอดภัย สาธารณะ ตามที่ผู้ประกอบการกิจการกระจายเสียง หรือกิจการโทรทัศน์ขอสั่งให้บริการสาธารณะ 3 ประเภทนี้ตามกฎหมายที่เกี่ยวกับการประกอบกิจการกระจายเสียง และกิจการโทรทัศน์ของประเทศไทย ได้แก่ประกาศคณะกรรมการกิจการกระจายเสียง หรือกิจการโทรทัศน์ (พ.ศ. 2551)
2 ข้อมูล ณ วันที่ 31 ธันวาคม 2557
ภาพที่ 3.4 แสดงความนิยมในการรับชมรายการจากสถานีโทรทัศน์ที่ได้รับความนิยมในลำดับที่ 3 ถึง 10 โดยช่องที่ได้รับความนิยมในลำดับที่ 3 คือช่อง Workpoint ซึ่งเป็นช่องที่มีดิจิทัลที่เพิ่งเริ่มออกอากาศแต่กลับได้รับความนิยมในอันดับต้นๆ ในเวลาอันรวดเร็ว เนื่องจากความได้เปรียบในการเป็นผู้มีประสบการณ์ผลิตเนื้อหาที่ให้แก่สถานีในระบบแอนะล็อกมาเป็นเวลาสองเดือนแล้ว เมื่อมีช่องสถานีเป็นของตนเองก็สามารถดึงฐานผู้ชมรายการมาไว้ในสถานีของตนเองได้ ปรากฏกรณีนี้เป็นการยืนยันความสำคัญของเนื้อหารายการ (content) ที่จะมีความสำคัญเพิ่มมากขึ้นเรื่อยๆ ในอนาคต และเป็นจุดแข่งขันที่สำคัญของสถานีโทรทัศน์ (ดูตารางที่ 3.2)

ภาพที่ 3.3 ระดับความชื่นชอบสถานีโทรทัศน์ 5 ช่องแรกที่ได้รับความนิยมสูงสุด (ทั่วประเทศ)
โดย Nielsen
ตารางที่ 3.2 ข้อมูลการสำรวจความนิยมในเดือนกรกฎาคม 2558

<table>
<thead>
<tr>
<th>อันดับ</th>
<th>ช่องรายการ</th>
<th>หมายเลขช่อง</th>
<th>TV Rating ทั่วประเทศ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>มีนาคม 2558</td>
</tr>
<tr>
<td>1</td>
<td>ช่อง 7</td>
<td>35</td>
<td>3.717</td>
</tr>
<tr>
<td>2</td>
<td>ช่อง 3</td>
<td>33</td>
<td>2.458</td>
</tr>
<tr>
<td>3</td>
<td>เวิร์คพอยท์ ทีวี</td>
<td>23</td>
<td>0.754</td>
</tr>
<tr>
<td>4</td>
<td>ช่อง 8</td>
<td>27</td>
<td>0.405</td>
</tr>
<tr>
<td>5</td>
<td>โมโน 29</td>
<td>29</td>
<td>0.318</td>
</tr>
<tr>
<td>6</td>
<td>ช่องวัน (One)</td>
<td>31</td>
<td>0.236</td>
</tr>
<tr>
<td>7</td>
<td>ช่อง 9</td>
<td>30</td>
<td>0.295</td>
</tr>
<tr>
<td>8</td>
<td>ช่อง 3 SD</td>
<td>28</td>
<td>0.067</td>
</tr>
<tr>
<td>9</td>
<td>ไทยรัฐทีวี</td>
<td>32</td>
<td>0.196</td>
</tr>
<tr>
<td>10</td>
<td>ทวีปทรู</td>
<td>24</td>
<td>0.101</td>
</tr>
<tr>
<td>11</td>
<td>ช่อง 3 แฟมิลี่</td>
<td>13</td>
<td>0.044</td>
</tr>
<tr>
<td>12</td>
<td>ช่องฟิชช์แลน</td>
<td>25</td>
<td>0.051</td>
</tr>
<tr>
<td>13</td>
<td>พีทีวี</td>
<td>36</td>
<td>0.086</td>
</tr>
<tr>
<td>14</td>
<td>นิวทีวี</td>
<td>18</td>
<td>0.059</td>
</tr>
<tr>
<td>15</td>
<td>อิมเมอร์ชั่นทีวี</td>
<td>34</td>
<td>0.058</td>
</tr>
<tr>
<td>16</td>
<td>ทีเอ็นเอ็น 24</td>
<td>16</td>
<td>0.061</td>
</tr>
</tbody>
</table>
ผลประกอบการ

ในช่วง 3 ปีที่ผ่านมา (2555-2557) นั้น ผู้ประกอบธุรกิจสื่อสารโทรทัศน์รายเดิมนั้นมีผลประกอบการที่ไม่เปลี่ยนแปลงมากนัก โดยความสามารถในการทำกำไรของธุรกิจคอนแกร็บที่ เนื่องจากการจากสัดส่วน กำไรก่อนค่าเสื่อมราคาและค่าใช้จ่ายตัดจ่าย (EBITDA) ต่อรายได้รวมแพร่พบว่า สัดส่วนดังกล่าวของ บริษัท บีชี-เทโร เอนเตอร์เทนเมนท์ จำกัด (มหาชน) ผู้ประกอบกิจการโทรทัศน์ช่อง 3 ลดลงเล็กน้อยจากประมาณ ร้อยละ 56 เหลือประมาณร้อยละ 52 เช่นเดียวกันกับ บริษัท กรุงเทพโทรทัศน์และวิทยุ จำกัด ผู้ประกอบ กิจการโทรทัศน์ช่อง 7 ที่มีสัดส่วน EBITDA/รายได้รวมคงที่ที่ประมาณร้อยละ 64 ลดลงช่วง 3 ปีสุดท้าย ขณะที่ บริษัท อมที จำกัด (มหาชน) ผู้ประกอบกิจการโทรทัศน์ช่องโมเดิร์นไนน์ กลับมีสัดส่วน EBITDA/ รายได้รวมคงที่ที่ประมาณร้อยละ 48 เหลือประมาณร้อยละ 31 อย่างไรก็ตาม สัดส่วน ดังกล่าวแสดงให้เห็นว่า การประกอบธุรกิจสื่อสารโทรทัศน์นั้นมีความสามารถในการทำกำไรมากกว่าสื่ออื่นๆ อย่างชัดเจน และเป็นเหตุผลสำคัญที่ต้องดูให้ผู้ประกอบการจำเป็นต้องการเข้ามาแข่งขันในตลาด โทรทัศน์

3.2.3 โครงสร้างตลาดหนังสือพิมพ์

ตลาดหนังสือพิมพ์นั้นเป็นตลาดที่แตกต่างไปจากตลาดสื่อวิทยุและสื่อโทรทัศน์ เนื่องจากพื้นฐานเดิมของการประกอบกิจการนั้นมิได้อาศัยคลื่นความถี่ในการประกอบกิจการ และมีโตเต็มที่ในการทำกำไรและของคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์ และกิจการโทรคมนาคมแห่งชาติ (กสทช.) ตลาด หนังสือพิมพ์ในระดับชาตินั้นมีผู้ผลิตรายใหญ่เพียงไม่กี่ราย โดยในส่วนของหนังสือพิมพ์รายวันภาษาไทยนั้น ไทยรัฐ ครอบคลุมตลาดประมาณครึ่งหนึ่งเมื่อวัดจากยอดจำหน่ายรวม รองลงมาคือเดลินิวส์ ซึ่งมีส่วนแบ่งตลาดประมาณหนึ่งในสี่
ตารางที่ 3.3 ส่วนแบ่งตลาดหนังสือพิมพ์

<table>
<thead>
<tr>
<th>หนังสือพิมพ์</th>
<th>ส่วนแบ่งตลาดโดยประมาณ (ร้อยละ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ไทยรัฐพุ骰</td>
<td>48</td>
</tr>
<tr>
<td>เดลินิวส์</td>
<td>24</td>
</tr>
<tr>
<td>ข่าวสด</td>
<td>12</td>
</tr>
<tr>
<td>มติชน</td>
<td>10</td>
</tr>
<tr>
<td>คมชัดลึก</td>
<td>5</td>
</tr>
<tr>
<td>หนังสือพิมพ์พุลกิจ รายวัน</td>
<td></td>
</tr>
<tr>
<td>ผู้จัดการ</td>
<td>38</td>
</tr>
<tr>
<td>กรุงเทพธุรกิจ</td>
<td>37</td>
</tr>
<tr>
<td>Post Today</td>
<td>25</td>
</tr>
<tr>
<td>หนังสือพิมพ์พุลกิจ ราย 3 วัน</td>
<td></td>
</tr>
<tr>
<td>ประชาชาติธุรกิจ</td>
<td>52</td>
</tr>
<tr>
<td>ฐานเศรษฐกิจ</td>
<td>48</td>
</tr>
</tbody>
</table>

ที่มา: รายงานประจำปี 2557 บริษัท มติชน จำกัด (มหาชน)

ประเด็นที่น่าสนใจที่ควรกล่าวถึงในที่นี้ คือ จำนวนผู้อ่านหนังสือพิมพ์ออนไลน์ของหนังสือพิมพ์ฉบับต่างๆ นั้นมีแนวโน้มเพิ่มสูงขึ้นมาก โดยบางฉบับนั้น จำนวนผู้อ่านหนังสือพิมพ์ออนไลน์นั้นมากกว่ายอดขายของหนังสือพิมพ์ (ดูภาพที่ 3.5)

ภาพที่ 3.5 จำนวนผู้อ่านหนังสือพิมพ์ออนไลน์

[กราฟแสดงจำนวนผู้อ่านหนังสือพิมพ์อย่างเปรียบเทียบ]

ที่มา: ประมาณการจากรายงาน 56-1 ของมติชน และ truehits.net
ผลประกอบการ

ในช่วง 3 ปีที่ผ่านมา (2555-2557) นั้น ผู้ประกอบธุรกิจหนังสือพิมพ์รายใหญ่หลายรายนั้นมีผลประกอบการที่มีแนวโน้มทำกำไรของธุรกิจต่ำลงมาก เมื่อพิจารณาจากผลสินค้ากำไรก่อนค่าเสื่อมราคาและค่าใช้จ่ายตัดจาก (EBITDA) ต่อรายได้รวมแล้วพบว่า สัดสวนค่าการผลิตของบริษัท มติชน จำกัด (มหาชน) ผู้ผลิตหนังสือพิมพ์ในเครือมติชน ลดลงจากประมาณ 14 เหลือประมาณร้อยละ 1 เท่านั้น เช่นเดียวกันกับบริษัท สี่พระยาการพิมพ์ จำกัด ผู้ผลิตหนังสือพิมพ์ที่มีมิติที่มีสัดสวน EBITDA/รายได้ลดลง จากประมาณร้อยละ 17 เหลือประมาณร้อยละ 8 และ บริษัท โพสต์ พับลิชชิ่ง จำกัด (มหาชน) ผู้ผลิตหนังสือพิมพ์บางกอกโพสต์ และโพสต์ทูเดย์ ที่มีสัดสวน EBITDA/รายได้ลดลงเป็นศูนย์ จากเดิมประมาณร้อยละ 13

ขณะที่ บริษัท เนชั่นมัลติมีเดีย กรุ๊ป จำกัด (มหาชน) ผู้ผลิตหนังสือพิมพ์เครือเดอะเนชั่น และบริษัทวารสาร จำกัด ผู้ผลิตหนังสือพิมพ์มติชนนั้นมีความสามารถในการทำกำไรค่อนข้างคงที่ โดยสัดสวน EBITDA/รายได้ ของบริษัท เนชั่นมัลติมีเดีย กรุ๊ป จำกัด (มหาชน) อยู่ที่ประมาณร้อยละ 20-22 ตลอดช่วง 3 ปีหลังสุดขณะที่สัดสวน EBITDA/รายได้ของบริษัทวารสาร จำกัด อยู่ที่ประมาณร้อยละ 46-50 ช่วงเวลาเดียวกัน

3.3 ผลกระทบของการเติบโตแบบก้าวกระโดดของสื่อใหม่ (new media) ที่มีต่อโครงสร้างตลาดสื่อตั้งเดิม

รายได้จากค่าโฆษณา

รายได้จากค่าโฆษณาฉบับเป็นรายได้หลักของผู้ประกอบธุรกิจสื่อในตลาดสื่อตั้งเดิม (traditional media) ทั้งกิจการสถานีวิทยุ กิจการสถานีโทรทัศน์และกิจการหนังสือพิมพ์ เมื่อเปรียบเทียบรายได้จากค่าโฆษณาของผู้ประกอบธุรกิจสื่อในช่วงเดือนกรกฎาคม-กันยายน ของปี 2557 กับปี 2558 จะพบว่า งบโฆษณาวารสารที่วิจัยฉลุย เคเบิ้ล/ดาวเทียม ลดลง แต่ที่วิจัยทั้งหมดเพิ่มขึ้นมาก (ดูภาพที่ 3.6) ส่วนงบโฆษณาวิทยุไม่เปลี่ยนแปลงมากนัก ขณะที่สื่อสิ่งพิมพ์ลดลงเล็กน้อย (ดูภาพที่ 3.7)

ภาพที่ 3.6 งบโฆษณาทางโทรทัศน์

หมาย: ล้านบาท

<table>
<thead>
<tr>
<th>ปี</th>
<th>2557</th>
<th>2558</th>
</tr>
</thead>
<tbody>
<tr>
<td>ทีวีดิจิทัล</td>
<td></td>
<td></td>
</tr>
<tr>
<td>เคเบิ้ลวิทยุ/ดาวเทียม</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ทีวีแอนะล็อก</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ที่มา: Nielsen
หมายเหตุ: ม.ค. – ก.ค.
ภาพที่ 3.7 งบโฆษณาทางวิทยุ นิตยสาร และหนังสือพิมพ์

ที่มา: Nielsen
หมายเหตุ: ม.ค. - ก.ค.

ตรงกันข้ามกับสื่อดังเดิม งบโฆษณาทางสื่อดิจิทัลเพิ่มขึ้นอย่างก้าวกระโดดตลอดช่วง 3 ปีที่ผ่านมาโดยสมาคมโฆษณาดิจิทัล (ประเทศไทย) (Digital Advertising Association (Thailand): DAAT) ประมาณการว่างบดังกล่าวอาจทะลุ 1 หมื่นล้านบาทภายในปี 2558 นี้ (ดูภาพที่ 3.8)

ภาพที่ 3.8 งบโฆษณาทางสื่อดิจิทัล

ที่มา: สมาคมโฆษณาดิจิทัล (ประเทศไทย)
ความสามารถในการทำกำไรของสื่อ

ในปี 2557 นั้น ผู้ประกอบธุรกิจสื่อในตลาดสื่อดั้งเดิม (traditional media) ทั้งกิจการสถานีวิทยุ กิจการสถานีโทรทัศน์และกิจการหนังสือพิมพ์ จำนวนไม่น้อยประสบภาวะขาดทุน โดยเฉพาะผู้ผลิตสื่อสิ่งพิมพ์ ขณะที่กลุ่มผู้ประกอบกิจการโทรทัศน์รายเดิมยังคงสามารถทำกำไรได้ (ดูภาพที่ 3.9) นอกจากนี้ หากวัดผลการดำเนินงานของบริษัทจาก EBITDA ต่อรายได้รวม พบว่า ผู้ประกอบธุรกิจสื่อสิ่งพิมพ์มีความสามารถในการทำกำไรอยู่ โดยกลุ่มผู้ประกอบกิจการโทรทัศน์รายเดิมมีความสามารถในการทำกำไรสูงกว่ากลุ่มผู้ผลิตรายการ และผู้ผลิตสื่อสิ่งพิมพ์ (ดูภาพที่ 3.10) อย่างไรก็ตาม ความสามารถในการทำกำไรของผู้ประกอบธุรกิจสื่อดังกล่าวลดลงในช่วง 3 ปีที่ผ่านมา โดยเฉพาะอุตสาหกรรมสื่อสิ่งพิมพ์ (ดูภาพที่ 3.11)

ภาพที่ 3.9 กำไรสุทธิของผู้ประกอบกิจการสื่อรายใหญ่ปี 2557

ภาพที่ 3.10 EBITDA/รายได้รวม ของผู้ประกอบกิจการสื่อรายใหญ่ปี 2557

ที่มา: ค้นชื่อจากตลาดหลักทรัพย์แห่งประเทศไทย และ Business Online
ภาพที่ 3.11 การเปลี่ยนแปลง EBITDA/รายได้รวม ของผู้ประกอบกิจการสื่อรายใหญ่ปี 2555-2557

หน่วย: %

ที่มา: ค่าร่วมจากตลาดหลักทรัพย์แห่งประเทศไทย และ Business Online

3.4 ข้อเสนอเพื่อการกำกับดูแลสื่อแบบหลอมรวม

แนวโน้มการหลอมรวมเข้าหากันของสื่อ (media convergence) ซึ่งเกิดขึ้นจากความเปลี่ยนแปลงทางเทคโนโลยี ทำให้ภูมิทัศน์สื่อเปลี่ยนแปลงไปอย่างมีนัยสำคัญ การหลอมรวมสื่อทำให้เส้นแบ่งระหว่างการแพร่ภาพกระจายเสียง (broadcasting) และโทรคมนาคม (telecommunication) เลือนลางลง
ภาพที่ .. ห่วงโซ่อุปทานของสื่อในยุคหลอมรวม

ภาพอนาคตของระบบสื่อจากการหลอมรวม สามารถสรุปได้ดังนี้

- เนื้อหาสื่อเดียวกัน จากผู้ผลิตเดียวกัน สามารถเผยแพร่ไปยังผู้ชมผ่านช่องทางสื่อได้หลากหลาย ช่องทาง
- แต่ละช่องทางการเผยแพร่ มีการกำกับดูแลที่แตกต่างกัน และมีประเด็นเฉพาะที่ไม่เหมือนกัน ทำให้เกิดความไม่เสมอภาคในการแข่งขัน
- ในอนาคตระยะไกล การเผยแพร่เนื้อหาจะมุ่งไปสู่ช่องทางอินเทอร์เน็ต เพราะเทคโนโลยีมีความทันสมัยที่สูงกว่าการแพร่ภาพกระจายเสียง
- หน่วยงานกำกับดูแลจะมีบทบาทน้อยลง เหลือเฉพาะการกำกับดูแลในมิติของเศรษฐกิจ ขณะที่ การกำกับดูแลเนื้อหาที่เป็นไปได้ยาก

ทั้งนี้ ในช่วงเปลี่ยนผ่านนั้น การกำกับดูแลที่พึงปรารถนาควรจะ

- มีวัตถุประสงค์เพื่อประโยชน์ของสาธารณะในภาพรวม ทั้งในมิติทางเทคนิค ทางเศรษฐกิจ และ สังคม
- สร้างการแข่งขันในการสื่อสารในทุกทางโดยย่างสมยอมภาคที่สุด
- แบ่งบทบาทหน้าที่ระหว่างรัฐ ผู้ประกอบการ และผู้บริโภค ในการการกำกับดูแล
มีความยืดหยุ่น เพื่อดอกถอนต่อความเปลี่ยนแปลงทางเทคโนโลยี และสร้างการมีส่วนร่วมของผู้มีส่วนได้เสีย

เมื่อค้าหนึ่งดีภาพอนาคตของระบบสื่อจากการหลอมรวมที่กล่าวมาข้างต้นนั้น ข้อเสนอแนะเกี่ยวกับบทบาทที่ควรจะเป็นของสานักงานคณะกรรมการกิจการกระจายเสียง กิจการโทรทัศน์และกิจการโทรคมนาคมแห่งชาติ ในฐานะองค์กรกำกับดูแล มีดังนี้
1) เน้นไปที่การกำกับดูแลทางเศรษฐกิจเป็นหลัก โดยการกำกับดูแลดังกล่าวควรเป็นไปเพื่อเอื้อให้การแข่งขันอย่างเสมอภาค (level-playing field) ทั้งในแพลตฟอร์มเดียวกันและข้ามแพลตฟอร์ม
2) ออกกฎระเบียบที่ชัดเจน และมีกลไกในการประเมินผลกระทบ (Regulatory Impact Assessment: RIA) เพื่อลดความไม่แน่นอนจากการกำกับดูแล และเพิ่มการมีส่วนร่วมของผู้มีส่วนได้เสีย
3) ใช้การกำกับดูแลอื่นๆเป็นส่วนเสริม ในการนี้ที่ตลาดไม่สามารถทำงานได้สมบูรณ์ เช่น คุณภาพและความหลากหลายของรายการ การคุ้มครองผู้บริโภคและผู้ด้อยโอกาสทางสังคม เป็นต้น

กาญจนา แก้วเทพ และ นิคม ชัยขุนพล (2555). คู่มือสื่อใหม่ศึกษา. กรุงเทพฯ: กองทุนสนับสนุนการวิจัย.

คริส เบเคอร์ และ ผาสุก พงษ์ไพจิตร (2557). ประวัติศาสตร์ไทยร่วมสมัย. กรุงเทพฯ: มติชน

ไทยพีบีเอส (2558) ประวัติองค์การกระจายเสียงและแพร่ภาพสาธารณะแห่งประเทศไทย [ออนไลน์]. เข้าถึงเมื่อ 2558. แหล่งที่มา http://org.thaipbs.or.th/orginfo/about/article41876.ece?id=1

ไทยรัฐออนไลน์(2558). สาปส่ง กสทช.? ดิจิตอลทีวีฝันค้าง [ออนไลน์]. แหล่งที่มา http://www.thairath.co.th/content/497897

พิรงรอง รามสูต (2556a). การกำกับดูแลเนื้อหาอินเทอร์เน็ต. กรุงเทพมหานคร: ศูนย์ศึกษานโยบายสื่อ คณะนิเทศศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

พิรงรอง รามสูต (2556b). วิทยุชุมชนในประเทศไทย จากการปฏิรูปสื่อสู่การกำกับดูแลที่ยั่งยืน. กรุงเทพมหานคร: ศูนย์ศึกษานโยบายสื่อ คณะนิเทศศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

พิรงรอง รามสูต ระนันทน์ และ ศศิธร ยุวโกศล (2546). ไพ่การกำกับดูแลเนื้อหาของสื่อวิทยุและโทรทัศน์ในประเทศไทย. รายงานวิจัยฉบับสมบูรณ์. กรุงเทพฯ: สำนักงานกองทุนสนับสนุนการวิจัย.

วิชาญ อุ่นอก (บรรณาธิการ) (2555). 1 ทศวรรษ วิทยุชุมชนไทย. กรุงเทพมหานคร: สหพันธ์วิทยุชุมชนแห่งชาติ.
อุบลรัตน์ ศริญวัชรี (2545). สื่อมวลชนในยุคปฏิรูป. กรุงเทพฯ: ส้านักพิมพ์คบไฟ.
อุบลรัตน์ ศริญวัชรี และคณะ (2550) สื่อสารมวลชนเบื้องต้น: สื่อมวลชน วิทยุกระจายเสียงและสังคม. กรุงเทพฯ: ส้านักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย